MDM4 and topoisomerase IIα (TOP2A) are overexpressed in various human cancers. MDM4 acts as an oncoprotein which promotes cancer progression by inhibiting tumor suppressor p53. As a DNA replication- and cell division-regulating enzyme, TOP2A is the main target of many anticancer therapy regimens; however, the exact role of TOP2A in cancer remains elusive. Herein, we report that MDM4 and TOP2A bind to each other and are mutually upregulated at the post-translational level, leading to TOP2A protein stabilization, inhibition of p53, and increased tumor-cell proliferation. We demonstrate that the C-terminal region (CTR) of TOP2A binds to a unique sequence (residues: 188–238) of MDM4, which contains an auto-inhibitory segment regulating the MDM4-p53 interaction. TOP2A binding in turn activates MDM4 for p53 binding, resulting in enhanced inhibition of p53 and cancer cell proliferation. Conversely, binding of the MDM4 sequence to the CTR of TOP2A stabilizes TOP2A protein, leading to increased TOP2A protein expression. These results reveal novel functions of MDM4 and TOP2A as well as their interactions in oncogenesis, suggesting that inhibition of the MDM4-TOP2A interaction may represent a novel strategy in specifically and simultaneously targeting TOP2A and MDM4 for cancer treatment.
TRAF1 is a member of the TRAF family, which plays important roles in signal transduction that mediate cell life and death in the immune response, inflammatory and malignant diseases. It is known that TRAF1 transcription is inducible by various cytokines, but little is known about the regulation of its mRNA translation. In the present study, we demonstrated that the human TRAF1 mRNA has an unusually long 5′-UTR that contains internal ribosome entry segment (IRES) regulating its translation. By performing gene transfection and reporter assays, we revealed that this IRES sequence is located within the 572 nt upstream from the AUG start codon. An element between nt −392 and −322 was essential for the IRES activity. Interestingly, we found that the TRAF1 expression is induced in cancer cells by chemotherapeutic drug vincristine that regulates cytoplasmic localization of polypyrimidine tract binding protein, which may contribute to the IRES-dependent translation of TRAF1 during vincristine treatment. These results indicate that TRAF1 translation is initiated via the IRES and regulated by vincristine, and suggest that regulation of the IRES-dependent translation of TRAF1 may be involved in effecting the cancer cell response to vincristine treatment.
The FK506-binding protein 12 (FKBP12) is a cytoplasmic protein and has been reported to possess multiple functions in signaling transduction based on its interaction with different cellular targets. Here, we report that FKBP12 interacts with oncoprotein MDM2 and induces MDM2 degradation. We demonstrate that FKBP12 degrades MDM2 through binding to MDM2 protein, disrupting MDM2/MDM4 interaction and inducing MDM2 self-ubiquitination. The FKBP12-mediated MDM2 degradation was significantly enhanced when the transfected MDM2 was localized in the cytoplasm. The endogenous MDM2, when it was induced by p53 subjecting to DNA-damaging stimuli such as treatment with doxorubicin, was also significantly inhibited by FKBP12. This is due to translocation of p53-induced MDM2 from the nucleus to the cytoplasm, which facilitates interaction with cytoplasmic FKBP12. Furthermore, the enhanced level of MDM2 following p53 activation in nutlin-3 treated cells was also inhibited by FKBP12. The FKBP12-mediated downregulation of MDM2 in response to doxorubicin or nutlin-3 results in continuing and constitutive activation of p53, inhibition of XIAP and sensitization of cancer cells to apoptosis. These results identify a novel function for FKBP12 in downregulating MDM2, which directly enhances sensitivity of cancer cells to chemotherapy and nutlin-3 treatment.
A novel small-molecule anthraquinone (AQ) analogue, AQ-101, which was synthesized through chemical modification of the core structures of rhein, exhibited potent anticancer activity. In the present study, we evaluated the cancer-inhibiting mechanism of AQ-101 and tested the therapeutic potential of this compound for treating cancer in mice. We found that AQ-101 was able to induce MDM2 protein degradation through a selfubiquitination and proteasome-mediated mechanism. This AQ-101-induced MDM2 downregulation led to activation of p53, which contributed to apoptosis of acute lymphoblastic leukemia (ALL), especially those with a wild-type p53 phenotype andMDM2 expression in vitro and in vivo. When given for a period of 2 weeks (20 mg/kg/day, 3/week), AQ-101 inhibited development of ALL in nude or SCID mice with a human ALL xenograft and achieved cure by the end of the 5-month experiment. Importantly, AQ-101 showed minimal or no inhibitory effect on normal human hematopoiesis in vitro and was well tolerated in vivo in animal models. Given that MDM2-overexpressing cancers are commonly refractory to current treatment options, our study results suggest that further development of AQ-101 is warranted, as it represents a potentially new, safe anticancer drug with a novel strategy for targeting MDM2.
MDM2 and XIAP are mutually regulated. Binding of MDM2 RING protein to the IRES region on XIAP mRNA results in MDM2 protein stabilization and enhanced XIAP translation. In this study, we developed a protein-RNA fluorescence polarization (FP) assay for high-throughput screening (HTS) of chemical libraries. Our FP-HTS identified eight inhibitors that blocked the MDM2 protein-XIAP RNA interaction, leading to MDM2 degradation. The compound-induced MDM2 downregulation resulted not only in inhibition of XIAP expression, but also in activation of p53, which contributed to cancer cell apoptosis in vitro and inhibition of cancer cell proliferation in vivo. Importantly, one of the MDM2/XIAP inhibitors, MX69, showed minimal inhibitory effect on normal human hematopoiesis in vitro and was very well tolerated in animal models.
Death-domain-associated protein (DAXX) is a multifunctional protein that regulates a wide range of cellular signaling pathways for both cell survival and apoptosis. Regulation of DAXX gene expression remains largely obscure. We recently reported that berberine (BBR), a natural product derived from a plant used in Chinese herbal medicine, downregulates DAXX expression at the transcriptional level. Here, we further investigate the mechanisms underlying the transcriptional suppression of DAXX by BBR. By analyzing and mapping the putative DAXX gene promoter, we identified the core promoter region (from -161 to -1), which contains consensus sequences for the transcriptional factors Sp1 and Ets1. We confirmed that Sp1 and Ets1 bound to the core promoter region of DAXX and stimulated DAXX transcriptional activity. In contrast, BBR bound to the DAXX core promoter region and suppressed its transcriptional activity. Following studies demonstrated a possible mechanism that BBR inhibited the DAXX promoter activity through blocking or disrupting the association of Sp1 or Ets1 and their consensus sequences in the promoter. Downregulation of DAXX by BBR resulted in inhibition of MDM2 and subsequently, activation of p53, leading to cancer cell death. Our results reveal a novel possible mechanism: by competitively binding to the Sp1 and Ets1 consensus sequences, BBR inhibits the transcription of DAXX, thus inducing cancer cell apoptosis through a p53-dependent pathway.
Triptolide, a natural product derived from the Chinese plant Tripterygium wilfordii, is reported to exhibit antitumor effects in a broad range of cancers. The antitumor activity of triptolide is associated with its biological activities, as it inhibits various pro-proliferative or anti-apoptotic factors that are dominantly expressed in given types of cancer cells. Herein, we demonstrate that triptolide induced apoptosis in a subgroup of acute lymphoblastic leukemia (ALL) cells overexpressing the MDM2 oncoprotein, by inhibiting MDM2 expression. More specifically, we found that triptolide inhibited MDM2 at the transcriptional level by suppressing its mRNA synthesis. This MDM2 inhibition led in turn to increased levels of p53 protein; however, p53 functionality was not activated, due to the fact that triptolide-treated cells lacked induction of p21 and PUMA as well as in G1 cell-cycle arrest. Triptolide-mediated downregulation of MDM2 increased inhibition of XIAP, its translational target, in a manner distinct from reactions to cellular stress and DNA-damaging agent ionizing radiation (IR) that induce XIAP due to p53-activated MDM2. These results suggest that increased inhibition of XIAP due to downregulation of MDM2 may play a critical role in triptolide-induced apoptosis in MDM2-overexpressing cancers.
Berberine, a natural product derived from a plant used in Chinese herbal medicine, is reported to exhibit anticancer effects; however, its mechanism of action is not clearly defined. Herein, we demonstrate that berberine induces apoptosis in acute lymphoblastic leukemia (ALL) cells by downregulating the MDM2 oncoprotein. The pro-apoptotic effects of berberine were closely associated with both the MDM2 expression levels and p53 status of a set of ALL cell lines. The most potent apoptosis was induced by berberine in ALL cells with both MDM2 overexpression and a wild-type (wt) p53, while no pro-apoptotic effect was detected in ALL cells that were negative for MDM2 and wt-p53. In contrast to the conventional chemotherapeutic drug doxorubicin, which induces p53 activation and a subsequent upregulation of MDM2, berberine strongly induced persistent downregulation of MDM2 followed by a steady-state activation of p53. We discovered that downregulation of MDM2 in ALL cells by berberine occurred at a post-translational level through modulation of DAXX, which disrupted the MDM2-DAXX-HAUSP interactions and thereby promoted MDM2 self-ubiquitination and degradation. Given that MDM2-overexpressing cancer cells are commonly chemoresistant, our findings suggest that this naturally-derived agent may have a highly useful role in the treatment of cancer patients with refractory disease.
In pediatric acute lymphoblastic leukemia (ALL), overexpression of murine double minute 2 (MDM2) protein by leukemic cells is typically associated with a wild-type (wt)-p53 phenotype and chemoresistance. A recently developed small-molecule antagonist of MDM2, nutlin-3, inhibits the MDM2–p53 interaction, resulting in induction of p53 activity and apoptosis. In this study, we evaluated the cytotoxic effect of nutlin-3 on ALL cells with different p53 status and MDM2 expression, using 18 cell lines and 30 primary leukemia samples. We found that both ALL cell lines and primary ALL samples with wt-p53 are sensitive to nutlin-3. No cytotoxic effect of nutlin-3 was detected in ALL cells with either p53-mutant or -null phenotype. In wt-p53 ALL cells, there was a significant positive correlation between MDM2 expression levels and sensitivity to nutlin-3. Nutlin-3-induced cell death was mediated by p53-induced activation of proapoptotic proteins and by p53-induced repression of the anti-apoptotic protein survivin. As p53 function is inhibited by MDM2 in chemoresistant, MDM2-overexpressing ALL cells, potent killing of these cells by nutlin-3 suggests that this agent may be a novel therapeutic for refractory ALL.
The MYCN gene plays a critical role in determining the clinical behavior of neuroblastoma. Although it is known that genomic amplification occurs in high-risk subsets, it remains unclear how MYCN expression is regulated in the pathogenesis of neuroblastomas. Herein, we report that MYCN expression was regulated by the oncoprotein MDM2 at the post-transcriptional level and was associated with neuroblastoma cell growth. Increasing MDM2 by ectopic overexpression in the cytoplasm enhanced both mRNA and protein expression of MYCN. Mechanistic studies found that the C-terminal RING domain of the MDM2 protein bound to the MYCN mRNA’s AU-rich elements within the 3′-untranslated region (3′UTR) and increased MYCN 3′UTR-mediated mRNA stability and translation. Conversely, MDM2 silencing by specific siRNA rendered the MYCN mRNA unstable and reduced the abundance of MYCN protein in MYCN-amplified neuroblastoma cell lines. Importantly, this MDM2 silencing resulted in a remarkable inhibition of neuroblastoma cell growth and induction of cell death through a p53-independent pathway. Our results indicate that MDM2 plays a p53-independent role in the regulation of both MYCN mRNA stabilization and its translation, suggesting that MDM2-mediated MYCN expression is one mechanism associated with growth of MYCN-associated neuroblastoma and disease progression.