Efficient generation of cardiomyocytes from human-induced pluripotent stem cells (hiPSCs) is important for their application in basic and translational studies. Space microgravity can significantly change cell activities and function. Previously, we reported upregulation of genes associated with cardiac proliferation in cardiac progenitors derived from hiPSCs that were exposed to space microgravity for 3 days. Here we investigated the effect of long-term exposure of hiPSC-cardiac progenitors to space microgravity on global gene expression. Cryopreserved 3D hiPSC-cardiac progenitors were sent to the International Space Station (ISS) and cultured for 3 weeks under ISS microgravity and ISS 1 G conditions. RNA-sequencing analyses revealed upregulation of genes associated with cardiac differentiation, proliferation, and cardiac structure/function and downregulation of genes associated with extracellular matrix regulation in the ISS microgravity cultures compared with the ISS 1 G cultures. Gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes mapping identified the upregulation of biological processes, molecular function, cellular components, and pathways associated with cell cycle, cardiac differentiation, and cardiac function. Taking together, these results suggest that space microgravity has a beneficial effect on the differentiation and growth of cardiac progenitors.
by
Jonathan Byrnes;
David Bailly;
David K Weho;
Fazlur Rahman;
Ivie Esangbedo;
Mohammed Hamzah;
Mousumi Banerjee;
Wenying Zhang;
Kevin Maher;
Kurt R. Schumacher;
Shriprasad R. Deshpande
IMPORTANCE:
Extubation failure (EF) after pediatric cardiac surgery is associated with increased morbidity and mortality.
OBJECTIVES:
We sought to describe the risk factors associated with early (< 48 hr) and late (48 hr ≤ 168 hr) EF after pediatric cardiac surgery and the clinical implications of these two types of EF.
DESIGN, SETTING, AND PARTICIPANTS:
Retrospective cohort study using prospectively collected clinical data for the Pediatric Cardiac Critical Care Consortium (PC4) Registry. Pediatric patients undergoing Society of Thoracic Surgeons benchmark operation or heart transplant between 2013 and 2018 available in the PC4 Registry were included.
MAIN OUTCOMES AND MEASURES:
We analyzed demographics and risk factors associated with EFs (primary outcome) including by type of surgery. We identified potentially modifiable risk factors. Clinical outcomes of mortality and length of stay (LOS) were reported.
RESULTS:
Overall 18,278 extubations were analyzed. Unplanned extubations were excluded from the analysis. The rate of early EF was 5.2% (948) and late EF was 2.5% (461). Cardiopulmonary bypass time, ventilator duration, airway anomaly, genetic abnormalities, pleural effusion, and diaphragm paralysis contributed to both early and late EF. Extubation during day remote from shift change and nasotracheal route of initial intubation was associated with decreased risk of early EF. Extubation in the operating room was associated with an increased risk of early EF but with decreased risk of late EF. Across all operations except arterial switch, EF portrayed an increased burden of LOS and mortality.
CONCLUSION AND RELEVANCE:
Both early and late EF are associated with significant increase in LOS and mortality. Study provides potential benchmarking data by type of surgery. Modifiable risk factors such as route of intubation, time of extubation as well as treatment of potential contributors such as diaphragm paralysis or pleural effusion can serve as focus areas for reducing EFs.
Background:
Coarctation of the aorta is a common form of critical congenital heart disease that remains challenging to diagnose prior to clinical deterioration. Despite current screening methods, infants with coarctation may present with life-threatening cardiogenic shock requiring urgent hospitalization and intervention. We sought to improve critical congenital heart disease screening by using a novel pulse oximetry waveform analysis, specifically focused on detection of coarctation of the aorta.
Methods and results:
Over a 2-year period, we obtained pulse oximetry waveform data on 18 neonates with coarctation of the aorta and 18 age-matched controls hospitalized in the cardiac intensive care unit at Children's Healthcare of Atlanta. Patients with coarctation were receiving prostaglandin E1 and had a patent ductus arteriosus. By analyzing discrete features in the waveforms, we identified statistically significant differences in the maximum rate of fall between patients with and without coarctation. This was accentuated when comparing the difference between the upper and lower extremities, with the lower extremities having a shallow slope angle when a coarctation was present (p-value 0.001). Postoperatively, there were still differences in the maximum rate of fall between the repaired coarctation patients and controls; however, these differences normalized when compared with the same individual's upper vs. lower extremities. Coarctation patients compared to themselves (preoperatively and postoperatively), demonstrated waveform differences between upper and lower extremities that were significantly reduced after successful surgery (p-value 0.028). This screening algorithm had an accuracy of detection of 72% with 0.61 sensitivity and 0.94 specificity.
Conclusions:
We were able to identify specific features in pulse oximetry waveforms that were able to accurately identify patients with coarctation and further demonstrated that these changes normalized after surgical repair. Pulse oximetry screening for congenital heart disease in neonates may thus be improved by including waveform analysis, aiming to identify coarctation of the aorta prior to critical illness. Further large-scale testing is required to validate this screening model among patients in a newborn nursery setting who are low risk for having coarctation.
Tricuspid regurgitation (TR) is common after a heart transplant and is associated with worse clinical outcomes. The incidence ranges from 34% immediately after transplant to 20% by 10 years. Most patients can be managed medically; however, severe TR and symptomatic right heart failure warrant tricuspid valve replacement. The use of Melody transcatheter pulmonary valve in the tricuspid position is previously described. We report a unique case of posttransplant severe TR treated with surgical bioprosthetic tricuspid valve replacement who subsequently underwent successful transcatheter Melody valve placement in tricuspid position for progressive bioprosthetic valve stenosis with 11 years of follow-up.
Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes.
Human pluripotent stem cells (hPSCs) are a promising cell source for regenerative medicine, but their derivatives need to be rigorously evaluated for residual stem cells to prevent teratoma formation. Here, we report the development of novel surface-enhanced Raman scattering (SERS)-based assays that can detect trace numbers of undifferentiated hPSCs in mixed cell populations in a highly specific, ultra-sensitive, and time-efficient manner. By targeting stem cell surface markers SSEA-5 and TRA-1-60 individually or simultaneously, these SERS assays were able to identify as few as 1 stem cell in 106 cells, a sensitivity (0.0001%) which was ∼2000 to 15,000-fold higher than that of flow cytometry assays. Using the SERS assay, we demonstrate that the aggregation of hPSC-based cardiomyocyte differentiation cultures into 3D spheres significantly reduced SSEA-5+ and TRA-1-60+ cells compared with parallel 2D cultures. Thus, SERS may provide a powerful new technology for quality control of hPSC-derived products for preclinical and clinical applications.
Objective: The purpose of this review is to present the available literature on the use of nonopioid analgesics such as nonsteroidal anti-inflammatory drugs in postcardiac surgery pediatric patients, mainly to focus on patients <1 year of age, and to provide the foundation for future research. Materials and Methods: Published studies that address the use on nonopioid medications for postoperative sedation and analgesia in infants and children undergoing cardiac surgery were identified from online sources. Studies were reviewed by two authors independently to assess the quality of the data as well as the evidence. Due to limited availability of such studies, the review was then expanded to include use in noncardiac procedures as well as to expanded age groups. All studies that met the primary objective were included. Results/Data Synthesis: Majority of the studies in the population of interest were related to use of ketorolac. Five studies specifically addressed ketorolac use in cardiac patients. In addition, studies were reviewed for nonopioid analgesia in noncardiac patients and included as a part of the available evidence as in the case of acetaminophen use. Newer agents as well as agents with very limited information were also acknowledged. Conclusion: Nonopioid medications appear to show promise for analgesia in infants undergoing cardiac surgery, with ketorolac being the most potent agent as a potential substitute for opioids. These agents demonstrate a reasonable safety profile even in the very young. There continue to be significant gaps in knowledge before their adoption becomes routine. However, gives the awareness regarding short-term and long-term impact of opioid use in this vulnerable population, and studies of such agents are an urgent need.
In microgravity, cells undergo profound changes in their properties. However, how human cardiac progenitors respond to space microgravity is unknown. In this study, we evaluated the effect of space microgravity on differentiation of human induced pluripotent stem cell (hiPSC)-derived cardiac progenitors compared with 1G cultures on the International Space Station (ISS). Cryopreserved 3D cardiac progenitors were cultured for 3 weeks on the ISS. Compared with 1G cultures, the microgravity cultures had 3-fold larger sphere sizes, 20-fold higher counts of nuclei, and increased expression of proliferation markers. Highly enriched cardiomyocytes generated in space microgravity showed improved Ca2+ handling and increased expression of contraction-associated genes. Short-term exposure (3 days) of cardiac progenitors to space microgravity upregulated genes involved in cell proliferation, survival, cardiac differentiation, and contraction, consistent with improved microgravity cultures at the late stage. These results indicate that space microgravity increased proliferation of hiPSC-cardiomyocytes, which had appropriate structure and function.
More than 5 million patients have admitted annually to intensive care units (ICUs) in the United States. The leading causes of mortality are cardiovascular failures, multi-organ failures, and sepsis. Data-driven techniques have been used in the analysis of patient data to predict adverse events, such as ICU mortality and ICU readmission. These models often make use of temporal or static features from a single ICU database to make predictions on subsequent adverse events. To explore the potential of domain adaptation, we propose a method of data analysis using gradient boosting and convolutional autoencoder (CAE) to predict significant adverse events in the ICU, such as ICU mortality and ICU readmission. We demonstrate our results from a retrospective data analysis using patient records from a publicly available database called Multi-parameter Intelligent Monitoring in Intensive Care-II (MIMIC-II) and a local database from Children's Healthcare of Atlanta (CHOA). We demonstrate that after adopting novel data imputation on patient ICU data, gradient boosting is effective in both the mortality prediction task and the ICU readmission prediction task. In addition, we use gradient boosting to identify top-ranking temporal and non-temporal features in both prediction tasks. We discuss the relationship between these features and the specific prediction task. Lastly, we indicate that CAE might not be effective in feature extraction on one dataset, but domain adaptation with CAE feature extraction across two datasets shows promising results.