Pyrophosphate, which may be deficient in advanced renal failure, is a potent inhibitor of vascular calcification. To explore its use as a potential therapeutic, we injected exogenous pyrophosphate subcutaneously or intraperitoneally in normal rats and found that their plasma pyrophosphate concentrations peaked within 15 min. There was a single exponential decay with a half-life of 33 min. The kinetics were indistinguishable between the two routes of administration or in anephric rats. The effect of daily intraperitoneal pyrophosphate injections on uremic vascular calcification was then tested in rats fed a high-phosphate diet containing adenine for 28 days to induce uremia. Although the incidence of aortic calcification varied and was not altered by pyrophosphate, the calcium content of calcified aortas was significantly reduced by 70%. Studies were repeated in uremic rats given calcitriol to produce more consistent aortic calcification and treated with sodium pyrophosphate delivered intraperitoneally in a larger volume of glucose-containing solution to prolong plasma pyrophosphate levels. This maneuver significantly reduced both the incidence and amount of calcification. Quantitative histomorphometry of bone samples after double-labeling with calcein indicated that there was no effect of pyrophosphate on the rates of bone formation or mineralization. Thus, exogenous pyrophosphate can inhibit uremic vascular calcification without producing adverse effects on bone.
Although it is known that bisphosphonates prevent medial vascular calcification in vivo, their mechanism of action remains unknown and, in particular, whether they act directly on the blood vessels or indirectly through inhibition of bone resorption. To determine this, we studied the effects of two bisphosphonates on calcification of rat aortas in vitro and on in vivo aortic calcification and bone metabolism in rats with renal failure. We produced vascular calcification in rats with adenine-induced renal failure fed a high-phosphate diet. Daily treatment with either etidronate or pamidronate prevented aortic calcification, with the latter being 100-fold more potent. Both aortic calcification and bone formation were reduced in parallel; however, bone resorption was not significantly affected. In all uremic rats, aortic calcium content correlated with bone formation but not with bone resorption. Bisphosphonates also inhibited calcification of rat aortas in culture and arrested further calcification of precalcified vessels but did not reverse their calcification. Expression of osteogenic factors or calcification inhibitors was not altered by etidronate in vitro. Hence, these studies show that bisphosphonates can directly inhibit uremic vascular calcification independent of bone resorption. The correlation between inhibition of aortic calcification and bone mineralization is consistent with a common mechanism such as the prevention of hydroxyapatite formation and suggests that bisphosphonates may not be able to prevent vascular calcification without inhibiting bone formation in uremic rats.
Pyrophosphate is a potent inhibitor of medial vascular calcification where its level is controlled by hydrolysis via a tissue-nonspecific alkaline phosphatase (TNAP). We sought to determine if increased TNAP activity could explain the pyrophosphate deficiency and vascular calcification seen in renal failure. TNAP activity increased twofold in intact aortas and in aortic homogenates from rats made uremic by feeding adenine or by 5/6 nephrectomy. Immunoblotting showed an increase in protein abundance but there was no increase in TNAP mRNA assessed by quantitative polymerase chain reaction. Hydrolysis of pyrophosphate by rat aortic rings was inhibited about half by the nonspecific alkaline phosphatase inhibitor levamisole and was reduced about half in aortas from mice lacking TNAP. Hydrolysis was increased in aortic rings from uremic rats and all of this increase was inhibited by levamisole. An increase in TNAP activity and pyrophosphate hydrolysis also occurred when aortic rings from normal rats were incubated with uremic rat plasma. These results suggest that a circulating factor causes pyrophosphate deficiency by regulating TNAP activity and that vascular calcification in renal failure may result from the action of this factor. If proven by future studies, this mechanism will identify alkaline phosphatase as a potential therapeutic target.
Plasma levels of pyrophosphate, an endogenous inhibitor of vascular calcification, are reduced in end-stage renal disease and correlate inversely with arterial calcification. However, it is not known whether the low plasma levels are directly pathogenic or are merely a marker of reduced tissue levels. This was tested in an animal model in which aortas were transplanted between normal mice and Enpp1-/-mice lacking ectonucleotide pyrophosphatase phosphodiesterase, the enzyme that synthesizes extracellular pyrophosphate. Enpp1-/-mice had very low plasma pyrophosphate and developed aortic calcification by 2 months that was greatly accelerated with a high-phosphate diet. Aortas of Enpp1-/-mice showed no further calcification after transplantation into wild-type mice fed a high-phosphate diet. Aorta allografts of wild-type mice calcified in Enpp1-/-mice but less so than the adjacent recipient Enpp1-/-aorta. Donor and recipient aortic calcium contents did not differ in transplants between wild-type and Enpp1-/-mice, demonstrating that transplantation per se did not affect calcification. Histology revealed medial calcification with no signs of rejection. Thus, normal levels of extracellular pyrophosphate are sufficient to prevent vascular calcification, and systemic Enpp1 deficiency is sufficient to produce vascular calcification despite normal vascular extracellular pyrophosphate production. This establishes an important role for circulating extracellular pyrophosphate in preventing vascular calcification.
Increasingly complex and constantly emerging cancer treatment protocols are associated with kidney toxicities. Data clearly demonstrate that when patients with cancer develop acute or chronic kidney disease, severe fluid and electrolyte abnormalities, outcomes are inferior, and the promise of curative therapeutic regimens is lessened. We present a case of a 74-year-old woman with metastatic, recurrent ER+/PR-/HER2+ invasive ductal carcinoma of the right breast, status post bilateral mastectomies, chemotherapy, radiation therapy, and hormonal therapies, who were clinically stable on Trastuzumab/Pertuzumab maintenance for about a year. She then experienced disease progression. She was started on Trastuzumab+Deruxtecan (T-Dxt). However, due to worsening diarrhea of more than 12 episodes per day, decreased oral intake, weakness and weight loss, she got admitted to the hospital. Laboratory data showed hyponatremia, hypokalemia, non-anion gap metabolic acidosis, hypomagnesemia, and hypophosphatemia. These laboratory abnormalities were initially attributed to diarrhea. Renal losses were suspected when the electrolyte abnormalities did not correct despite improving diarrhea. Urine electrolytes were hence tested. There was evidence of Fanconi syndrome with glucosuria, proteinuria, and renal potassium and phosphorus wasting. Fanconi syndrome was attributed to the Deruxtecan component of the combination chemotherapy, as she was previously on Trastuzumab with no such abnormalities. The electrolyte abnormalities resolved over the course of a few months. To our knowledge, this is the first case of Fanconi syndrome due to T-Dxt.
Matrix Gla protein (MGP) is an inhibitor of vascular calcification but its mechanism of action and pathogenic role are unclear. This was examined in cultured rat aortas and in a model of vascular calcification in rats with renal failure. Both carboxylated (GlaMGP) and uncarboxylated (GluMGP) forms were present in aorta and disappeared during culture with warfarin. MGP was also released into the medium and removed by ultracentrifugation, and similarly affected by warfarin. In a high-phosphate medium, warfarin increased aortic calcification but only in the absence of pyrophosphate, another endogenous inhibitor of vascular calcification. Although GlaMGP binds and inactivates bone morphogenic protein (BMP)-2, a proposed mediator of vascular calcification through up-regulation of the osteogenic transcription factor runx2, neither warfarin, BMP-2, nor the BMP-2 antagonist noggin altered runx2 mRNA content in aortas, and noggin did not prevent warfarin-induced calcification. Aortic content of MGP mRNA was increased 5-fold in renal failure but did not differ between calcified and noncalcified aortas. Immunoblots showed increased GlaMGP in noncalcified (5-fold) and calcified (20-fold) aortas from rats with renal failure, with similar increases in GluMGP. We conclude that rat aortic smooth muscle produces both GlaMGP and GluMGP in tissue-bound and soluble, presumably vesicular, forms. MGP inhibits calcification independent of BMP-2-driven osteogenesis and only in the absence of pyrophosphate, consistent with direct inhibition of hydroxyapatite formation. Synthesis of MGP is increased in renal failure and deficiency of GlaMGP is not a primary cause of medial calcification in this condition.
Mycoplasma and Ureaplasma infections have been described as a cause of hyperammonemia syndrome leading to devastating neurological injury in the post-transplant period, most commonly in lung transplant recipients. The occurrence of significant hyperammonemia caused by other urease-producing organisms remains unclear. We describe a case of disseminated cryptococcosis presenting with profound hyperammonemia in a 55-year-old orthotopic liver transplant recipient. Through a process of elimination, other potential causes for hyperammonemia were excluded revealing a probable association between hyperammonemia and disseminated cryptococcosis.
The contribution of medial calcification to vascular dysfunction in renal failure is unknown. Vascular function was measured ex vivo in control, noncalcified uremic, and calcified uremic aortas from rats with adenine-induced renal failure. Plasma urea was 16 ± 4, 93 ± 14, and 110 ± 25 mg/dl, and aortic calcium content was 27 ± 4, 29 ± 2, and 4,946 ± 1,616 nmol/mg dry wt, respectively, in the three groups. Maximal contraction by phenylephrine (PE) or KCl was reduced 53 and 63% in uremic aortas, and sensitivity to KCl but not PE was increased. Maximal relaxation to acetylcholine was impaired in uremic aortas (30 vs. 65%), and sensitivity to nitroprusside was also reduced, indicating some impairment of endothelium-independent relaxation as well. None of these parameters differed between calcified and noncalcified uremic aortas. However, aortic compliance was reduced in calcified aortas, ranging from 17 to 61% depending on the severity of calcification. We conclude that uremic vascular calcification, even when not severe, significantly reduces arterial compliance. Vascular smooth muscle and endothelial function are altered in renal failure but are not affected by medial calcification, even when severe.