Parkinson's disease (PD) is a neurodegenerative disease characterized by the gradual loss of dopaminergic (DA) neurons in the substantia nigra (SN) and the formation of intracellular Lewy bodies (LB) in the brain, which aggregates α-synuclein (α-Syn) as the main component. The interest of flavonoids as potential neuroprotective agents is increasing due to its high efficiency and low side effects. Baicalin is one of the flavonoid compounds, which is a predominant flavonoid isolated from Scutellaria baicalensis Georgi. However, the key molecular mechanism by which Baicalin can prevent the PD pathogenesis remains unclear. In this study, we used bioinformatic assessment including Gene Ontology (GO) to elucidate the correlation between oxidative stress and PD pathogenesis. RNA-Seq methods were used to examine the global expression profiles of noncoding RNAs and found that C/EBPβ expression was upregulated in PD patients compared with healthy controls. Interestingly, Baicalin could protect DA neurons against reactive oxygen species (ROS) and decreased C/EBPβ and α-synuclein expression in pLVX-Tet3G-α-synuclein SH-SY5Y cells. In a 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induced PD mouse model, the results revealed that treatment with Baicalin improved the PD model's behavioral performance and reduced dopaminergic neuron loss in the substantia nigra, associated with the inactivation of proinflammatory cytokines and oxidative stress. Hence, our study supported that Baicalin repressed C/EBPβ via redox homeostasis, which may be an effective potential treatment for PD.
Glioblastoma (GBM) is the most common and most aggressive brain tumor, associated with high levels of reactive oxidative species (ROS) due to metabolic and signaling aberrations. High ROS levels are detrimental to cells, but it remains incompletely understood how cancer cells cope with the adverse effects. Here we show that C/EBPβ, a ROS responsive transcription factor, regulates the transcription of NQO1 and GSTP1, two antioxidative reductases, which neutralize ROS in the GBM and mediates their proliferation. C/EBPβ is upregulated in EGFR overexpressed GBM cells, inversely correlated with the survival rates of brain tumor patients.
Interestingly, C/EBPβ binds the promoters of NQO1 and GSTP1 and escalates their expression. Overexpression of C/EBPβ selectively decreases the ROS in EGFR-overexpressed U87MG cells and promotes cell proliferation via upregulating NQO1 and GSTP1; whereas knocking down C/EBPβ elevates the ROS and reduces proliferation by repressing the reductases. Accordingly, C/EBPβ mediates the brain tumor growth in vivo, coupling with NQO1 and GSTP1 expression and ROS levels. Hence, C/EBPβ regulates the expression of antioxidative reductases and balances the ROS, promoting brain tumor proliferation.
Glioblastoma multiforme (GBM) is a highly aggressive brain tumor with a dismal prognosis, and the patients carrying EGFR-driven tumors with PTEN mutation do not respond to anti-EGFR therapy. The molecular mechanisms for this resistance remain unknown. Here, we show that PTEN induces the expression of NQO1, a flavoenzyme with dual roles in pro- and antitumorigenesis that decreases the formation of reactive oxygen species (ROS), which mediates the oxidative stress and GBM cell proliferation. NQO1 is reduced in EGFRvIII-overexpressed U87MG cells associated with low ROS, whereas NQO1 is highly escalated in PTEN stably expressed U87MG/EGFRvIII cells with high ROS. Interestingly, knockdown of NQO1 augments ROS and diminishes cell proliferation. Conversely, overexpression of NQO1 attenuates ROS and increases cell proliferation. By contrast, overexpression of PINK1, a PTEN-induced kinase 1, represses ROS and inhibits GBM cell proliferation. Therefore, our findings support that NQO1 displays a paradoxical role in mediating GBM growth in response to tumor suppressor PTEN.
by
Muhibullah S. Tora;
Stewart G. Neill;
Yuliya Lakhina;
Hemza Assed;
Michelle Zhang;
Purva P. Nagarajan;
Thais Federici;
Juanmarco Gutierrez;
Kimberly Hoang;
Yuhong Du;
Kecheng Lei;
Nicholas Boulis
Background: Spinal cord glioma (SCG) is considered an orphan disease that lacks effective treatment options with margins that are surgically inaccessible and an overall paucity of literature on the topic. The tumor microenvironment is a critical factor to consider in treatment and modeling design, especially with respect to the unresectable tumor edge. Recently, our group developed a high-grade spinal cord glioma (SCG) model in Göttingen minipigs. Methods: Immunofluorescence and ELISA were performed to explore the microenvironmental features and inflammation cytokines in this minipig SCG model. Protein carbonyl assay and GSH/GSSG assay were analyzed in the core and edge lesions in the minipig SCG model. The primary core and edge cells proliferation rate were shown in vitro, and the xenograft model in vivo. Results: We identified an elevated Ki-67 proliferative index, vascular and pericyte markers, CD31 and desmin in the tumor edge as compared to the tumor core. In addition, we found that the tumor edge demonstrated increased pro-inflammatory and gliomagenic cytokines including TNF-α, IL-1β, and IL-6. Furthermore, the mediation of oxidative stress is upregulated in the tumor edge. Hypoxic markers had statistically significant increased staining in the tumor core, but were notably still present in the tumor edge. The edge cells cultures derived from SCG biopsy also demonstrated an increased proliferative rate compared to core cell cultures in a xenotransplantation model. Conclusions: Our study demonstrates heterogeneity in microenvironmental features in our minipig model of high-grade SCG, with a phenotype at the edge showing increased oxidative stress, proliferation, inflammatory cytokines, neovascularization, and decreased but present staining for hypoxic markers. These findings support the utility of this model as a means for investigating therapeutic approaches targeting the more aggressive and surgically unresectable tumor border.
Intramedullary spinal cord tumors are a rare and understudied cancer with poor treatment options and prognosis. Our prior study used a combination of PDGF-B, HRAS, and p53 knockdown to induce the development of high-grade glioma in the spinal cords of minipigs. In this study, we evaluate the ability of each vector alone and combinations of vectors to produce high-grade spinal cord gliomas. Eight groups of rats (n = 8/group) underwent thoracolumbar laminectomy and injection of lentiviral vector in the lateral white matter of the spinal cord. Each group received a different combination of lentiviral vectors expressing PDGF-B, a constitutively active HRAS mutant, or shRNA targeting p53, or a control vector. All animals were monitored once per week for clinical deficits for 98 days. Tissues were harvested and analyzed using hematoxylin and eosin (H&E) and immunohistochemical (IHC) staining. Rats injected with PDGF-B+HRAS+sh-p53 (triple cocktail) exhibited statistically significant declines in all behavioral measures (Basso Beattie Bresnahan scoring, Tarlov scoring, weight, and survival rate) over time when compared to the control. Histologically, all groups except the control and those injected with sh-p53 displayed the development of tumors at the injection site, although there were differences in the rate of tumor growth and the histopathological features of the lesions between groups. Examination of immunohistochemistry revealed rats receiving triple cocktail displayed the largest and most significant increase in the Ki67 proliferation index and GFAP positivity than any other group. PDGF-B+HRAS also displayed a significant increase in the Ki67 proliferation index. Rats receiving PDGF-B alone and PDGF-B+ sh-p53 displayed more a significant increase in SOX2-positive staining than in any other group. We found that different vector combinations produced differing high-grade glioma models in rodents. The combination of all three vectors produced a model of high-grade glioma more efficiently and aggressively with respect to behavioral, physiological, and histological characteristics than the rest of the vector combinations. Thus, the present rat model of spinal cord glioma may potentially be used to evaluate therapeutic strategies in the future.
ApoE4, an apolipoprotein implicated in cholesterol transport and amyloid-β (Aβ) metabolism, is a major genetic risk determinant for Alzheimer's Disease (AD) and drives its pathogenesis via Aβ-dependent and -independent pathways. C/EBPβ, a proinflammatory cytokines-activated transcription factor, is upregulated in AD and mediates cytokines and δ-secretase expression. However, how ApoE4 contributes to AD pathogenesis remains incompletely understood. Here we show that ApoE4 and 27-hydroxycholesterol (27−OHC) co-activate C/EBPβ/δ-secretase signaling in neurons, mediating AD pathogenesis, and this effect is dependent on neuronal secreted Aβ and inflammatory cytokines. Inhibition of cholesterol metabolism with lovastatin diminishes neuronal ApoE4′s stimulatory effects. Furthermore, ApoE4 and 27−OHC also mediate lysosomal δ-secretase leakage, activation, secretion and endocytosis. Notably, 27−OHC strongly activates C/EBPβ/δ-secretase pathway in human ApoE4-TR mice and triggers AD pathologies and cognitive deficits, which is blocked by C/EBPβ depletion. Hence, our findings demonstrate that ApoE4 and 27−OHC additively trigger AD pathogenesis via activating C/EBPβ/δ-secretase pathway. Lowering cholesterol levels with statins should benefit the ApoE4 AD carriers.
Early stage diagnosis of Parkinson’s disease (PD) is challenging without significant motor symptoms. The identification of effective molecular biomarkers as a hematological indication of PD may help improve the diagnostic timelines and accuracy. In the present paper, we analyzed and compared the blood samples of PD and control (CTR) patients to identify the disease-related changes and determine the putative biomarkers for PD diagnosis. Based on the RNA sequencing analysis, differentially expressed genes (DEGs) were identified, and the co-expression network of DEGs was constructed using the weighted gene correlation network analysis (WGCNA). The analysis leads to the identification of 87 genes that were exclusively regulated in the PD group, whereas 66 genes were significantly increased and 21 genes were significantly decreased in contrast with the control group. The results indicate that the core lncRNA–mRNA co-expression network greatly changes the immune response in PD patients. Specifically, the results showed that Prader Willi Angelman Region RNA6 (PWAR6), LINC00861, AC83843.1, IRF family, IFIT family and calcium/calmodulin-dependent protein kinase IV (CaMK4) may play important roles in the immune system of PD. Based on the findings from the present study, future research aims at identifying novel therapeutic strategies for PD.