by
Jino Park;
Michaela Schlederer;
Martin Schreiber;
Ryan Ice;
Olaf Merkel;
Martin Bilban;
Sebastian Hofbauer;
Soojin Kim;
Joseph Addison;
Jie Zou;
Silvia Bunting;
Zhengqi Wang;
Menachem Shoham;
Gang Huang;
Zsuzsanna Bago-Horvath;
Laura F. Gibson;
Yon Rojanasakul;
Scot Remick;
Alexey Ivanov;
Elena Pugacheva;
Kevin Bunting;
Richard Moriggl;
Lukas Kenner;
William Tse
AF1q is an MLL fusion partner that was identified from acute myeloid leukemia (AML) patients with t (1; 11) (q21; q23) chromosomal abnormality. The function of AF1q is not yet fully known, however, elevated AF1q expression is associated with poor clinical outcomes in various malignancies. Here, we show that AF1q specifically binds to T-cell-factor-7 (TCF7) in the Wnt signaling pathway and results in transcriptional activation of CD44 as well as multiple downstream targets of the TCF7/ LEF1. In addition, enhanced AF1q expression promotes breast cancer cell proliferation, migration, mammosphere formation, and chemo-resistance. In xenograft models, enforced AF1q expression in breast cancer cells also promotes liver metastasis and lung colonization. In a cohort of 63 breast cancer patients, higher percentages of AF1q-positive cancer cells in primary sites were associated with significantly poorer overall survival (OS), disease-free survival (DFS), and brain metastasis-free survival (b-MFS). Using paired primary/metastatic samples from the same patients, we MDAdemonstrate that AF1q-positive breast cancer cells become dynamically dominant in the metastatic sites compared to the primary sites. Our findings indicate that breast cancer cells with a hyperactive AF1q/TCF7/CD44 regulatory axis in the primary sites may represent "metastatic founder cells" which have invasive properties.
Despite being an attractive molecular target for both lymphoid and myeloid leukemias characterized by activated tyrosine kinases, the molecular and physiological consequences of reduced signal transducer and activator of transcription-5 (Stat5) during leukemogenesis are not well known. Stat5 is a critical regulator of mouse hematopoietic stem cell (HSC) self-renewal and is essential for normal lymphocyte development. We report that pan-hematopoietic deletion in viable adult Vav1-Cre conditional knockout mice as well as Stat5abnull/null fetal liver transplant chimeras generated HSCs with reduced expression of quiescence regulating genes (Tie2, Mpl, Slamf1, Spi1, Cited2) and increased expression of B-cell development genes (Satb1, Dntt, Btla, Flk2). Using a classical murine B-cell acute lymphoblastic leukemia (B-ALL) model, we demonstrate that these HSCs were also poised to produce a burst of B-cell precursors upon expression of Bcl-2 combined with oncogenic Myc. This strong selective advantage for leukemic transformation in the background of Stat5 deficient hematopoiesis was permissive for faster initiation of Myc-induced transformation to B-ALL. However, once established, the B-ALL progression in secondary transplant recipients was Stat5-independent. Overall, these studies suggest that Stat5 can play multiple important roles that not only preserve the HSC compartment but can limit accumulation of potential pre-leukemic lymphoid populations.
Current therapy for acute myeloid leukemia (AML) primarily includes high-dose cytotoxic chemotherapy with or without allogeneic stem cell transplantation. Targeting unique cellular metabolism of cancer cells is a potentially less toxic approach. Monotherapy with mitochondrial inhibitors like metformin have met with limited success since escape mechanisms such as increased glycolytic ATP production, especially in hyperglycemia, can overcome the metabolic blockade. As an alternative strategy for metformin therapy, we hypothesized that the combination of 6-benzylthioinosine (6-BT), a broad-spectrum metabolic inhibitor, and metformin could block this drug resistance mechanism. Metformin treatment alone resulted in significant suppression of ROS and mitochondrial respiration with increased glycolysis accompanied by modest cytotoxicity (10–25%). In contrast, 6-BT monotherapy resulted in inhibition of glucose uptake, decreased glycolysis, and decreased ATP with minimal changes in ROS and mitochondrial respiration. The combination of 6-BT with metformin resulted in significant cytotoxicity (60–70%) in monocytic AML cell lines and was associated with inhibition of FLT3-ITD activated STAT5 and reduced c-Myc and GLUT-1 expression. Therefore, although the anti-tumor and metabolic effects of metformin have been limited by the metabolic reprogramming within cells, the novel combination of 6-BT and metformin targets this bypass mechanism resulting in reduced glycolysis, STAT5 inhibition, and increased cell death.
by
Zhengqi Wang;
Tamisha Y. Vaughan;
Wandi Zhu;
Yuhong Chen;
Guoping Fu;
Magdalena Medrzycki;
Hikaru Nishio;
Silvia Bunting;
Pamela A. Hankey-Giblin;
Asma Nusrat;
Charles A. Parkos;
Renren Wen;
Kevin Bunting
Inflammatory Bowel Disease (IBD) is a multi-factorial chronic inflammation of the gastrointestinal tract prognostically linked to CD8+ T-cells, but little is known about their mechanism of activation during initiation of colitis. Here, Grb2-associated binding 2/3 adaptor protein double knockout mice (Gab2/3-/-) were generated. Gab2/3-/- mice, but not single knockout mice, developed spontaneous colitis. To analyze the cellular mechanism, reciprocal bone marrow (BM) transplantation demonstrated a Gab2/3-/- hematopoietic disease-initiating process. Adoptive transfer showed individual roles for macrophages and T-cells in promoting colitis development in vivo. In spontaneous disease, intestinal intraepithelial CD8+ but much fewer CD4+, T-cells from Gab2/3-/- mice with rectal prolapse were more proliferative. To analyze the molecular mechanism, reduced PI3-kinase/Akt/mTORC1 was observed in macrophages and T-cells, with interleukin (IL)-2 stimulated T-cells showing increased pSTAT5. These results illustrate the importance of Gab2/3 collectively in signaling responses required to control macrophage and CD8+ T-cell activation and suppress chronic colitis.
Aging is associated with significant changes in hematopoiesis, including clonal dominance, anemia, myeloid malignancies, and reduced activation of signal transducer and activator of transcription 5 (Stat5). In previous studies, Stat5 deletion surprisingly amplified FLT3/ITD+ myeloid expansion or Myc-driven lymphoid expansion. Here we show that Stat5 deficiency has a strong impact upon transcriptional heterogeneity in single sorted c-Kit+Lin-Sca-1+ (KLS) cells or CD150+CD48- KLS long-term repopulating hematopoietic stem cells (LT-HSC). Single cell polymerase chain reaction (PCR) was performed on selected regulators of multi-lineage hematopoiesis. At least two dominant sub-populations were identified by increased expression of cell cycle regulatory and leukemia-associated genes. Furthermore, in the top expressing quartile of cells, the majority of genes were proportionally overrepresented. In wildtype KLS cells, Stat5 mRNA levels were also strongly correlated with several genes. Since heterogeneity decreases with age or inflammatory or oncogenic stress, these results provide a potential mechanistic linkage to Stat5 expression.
MYC is a critical growth regulatory gene that is commonly over expressed in a wide range of cancers. Therapeutic targeting of MYC transcriptional activity has long been a goal, but it has been difficult to achieve with drugs that directly block its DNA-binding ability. Additional approaches that exploit oncogene addiction are promising strategies against MYC-driven cancers. Also, drugs that target metabolic regulatory pathways and enzymes have potential for indirectly reducing MYC levels. Glucose metabolism and oxidative phosphorylation, which can be targeted by multiple agents, promote cell growth and MYC expression. Likewise, modulation of the signaling pathways and protein synthesis regulated by adenosine monophosphate-activated protein kinase (AMPK) and mechanistic target of rapamycin (mTOR) can also be an effective route for suppressing MYC translation. Furthermore, recent data suggest that metabolism of nucleotides, fatty acids and glutamine are exploited to alter MYC levels. Combination therapies offer potential new approaches to overcome metabolic plasticity caused by single agents. Although potential toxicities must be carefully controlled, new inhibitors currently being tested in clinical trials offer significant promise. Therefore, as both a downstream target of metabolism and an upstream regulator, MYC is a prominent central regulator of cancer metabolism. Exploiting metabolic vulnerabilities of MYC-driven cancers is an emerging research area with translational potential.
by
Chenhui Wang;
Ling Wu;
Katarzyna Bulek;
Bradley N. Martin;
Jarod A. Zepp;
Zizhen Kang;
Caini Liu;
Tomasz Herjan;
Saurav Misra;
Julie A. Carman;
Ji Gao;
Ashok Dongre;
Shujie Han;
Kevin Bunting;
Jennifer S. Ko;
Hui Xiao;
Vijay K. Kuchroo;
Wenjun Ouyang;
Xiaoxia Li
Act1 is an essential adaptor in interleukin 17 (IL-17)-mediated signaling and is recruited to the receptor for IL-17 after stimulation with IL-17. Here we found that Act1 was a 'client' protein of the molecular chaperone hsp90. The D10N variant of Act1 (Act1(D10N)) that is linked to susceptibility to psoriasis was defective in its interaction with hsp90, which resulted in a global loss of Act1 function. Act1-deficient mice modeled the mechanistic link between loss of Act1 function and susceptibility to psoriasis. Although Act1 was necessary for IL-17-mediated inflammation, Act1-deficient mice had a hyperactive response of the TH 17 subset of helper T cells and developed spontaneous IL-22-dependent skin inflammation. In the absence of IL-17 signaling, IL-22 was the main contributor to skin inflammation, which provides a molecular mechanism for the association of Act1(D10N) with psoriasis susceptibility.
by
Josephine Fernando;
Travis W. Faber;
Nicholas A. Pullen;
Yves T. Falanga;
Elizabeth Motunrayo Kolawole;
Carole A. Oskeritzian;
Brian O. Barnstein;
Geethani Bandara;
Geqiang Li;
Lawrence B. Schwartz;
Sarah Spiegel;
David B. Straus;
Daniel H. Conrad;
Kevin Bunting;
John J. Ryan
We previously demonstrated that TGF-β1 suppresses IgE-mediated signaling in human and mouse mast cells in vitro, an effect that correlated with decreased expression of the high-affinity IgE receptor, FcεRI. The in vivo effects of TGF-β1 and the means by which it suppresses mast cells have been less clear. This study shows that TGF-β1 suppresses FcεRI and c-Kit expression in vivo. By examining changes in cytokine production concurrent with FcεRI expression, we found that TGF-β1 suppresses TNF production independent of FcεRI levels. Rather, IgE-mediated signaling was altered. TGF-β1 significantly reduced expression of Fyn and Stat5, proteins critical for cytokine induction. These changes may partly explain the effects of TGF-β1, because Stat5B overexpression blocked TGF-mediated suppression of IgE-induced cytokine production. We also found that Stat5B is required for mast cell migration toward stem cell factor, and that TGF-β1 reduced this migration. We found evidence that genetic background may alter TGF responses. TGF-β1 greatly reduced mast cell numbers in Th1-prone C57BL/6, but not Th2-prone 129/Sv mice. Furthermore, TGF-β1 did not suppress IgE-induced cytokine release and did increase c-Kit-mediated migration in 129/Sv mast cells. These data correlated with high basal Fyn and Stat5 expression in 129/Sv cells, which was not reduced by TGF-β1 treatment. Finally, primary human mast cell populations also showed variable sensitivity to TGF-β1-mediated changes in Stat5 and IgEmediated IL-6 secretion. We propose that TGF-β1 regulates mast cell homeostasis, and that this feedback suppression may be dependent on genetic context, predisposing some individuals to atopic disease.
STAT5 transcription factors are frequently activated in hematopoietic neoplasms and are targets of various tyrosine kinase oncogenes. Evidences for a crosstalk between STAT5 and reactive oxygen species (ROS) metabolism have recently emerged but mechanisms involved in STAT5-mediated regulation of ROS still remain elusive. We demonstrate that sustained activation of STAT5 induced by Bcr-Abl in chronic myeloid leukemia (CML) cells promotes ROS production by repressing expression of two antioxidant enzymes, catalase and glutaredoxin-1(Glrx1). Downregulation of catalase and Glrx1 expression was also observed in primary cells from CML patients. Catalase was shown not only to reduce ROS levels but also, to induce quiescence in Bcr-Abl-positive leukemia cells. Furthermore, reduction of STAT5 phosphorylation and upregulation of catalase and Glrx1 were also evidenced in leukemia cells cocultured with bone marrow stromal cells to mimic a leukemic niche. This caused downregulation of ROS levels and enhancement of leukemic cell quiescence. These data support a role of persistent STAT5 signaling in the regulation of ROS production in myeloid leukemias and highlight the repression of antioxidant defenses as an important regulatory mechanism.
by
Anindya Chatterjee;
Joydeep Ghosh;
Baskar Ramdas;
Raghuveer S. Mali;
Holly Martin;
Michihiro Kobayashi;
Sasidhar Vemula;
Victor H. Canela;
Emily R. Waskow;
Valeria Visconte;
Ramon V. Tiu;
Catherine C. Smith;
Neil Shah;
Kevin Bunting;
H. Scott Boswell;
Yan Liu;
Rebecca J. Chan;
Reuben Kapur
Oncogenic mutations of FLT3 and KIT receptors are associated with poor survival in patients with acute myeloid leukemia (AML) and myeloproliferative neoplasms (MPNs), and currently available drugs are largely ineffective. Although Stat5 has been implicated in regulating several myeloid and lymphoid malignancies, how precisely Stat5 regulates leukemogenesis, including its nuclear translocation to induce gene transcription, is poorly understood. In leukemic cells, we show constitutive activation of focal adhesion kinase (FAK) whose inhibition represses leukemogenesis. Downstream of FAK, activation of Rac1 is regulated by RacGEF Tiam1, whose inhibition prolongs the survival of leukemic mice. Inhibition of the Rac1 effector PAK1 prolongs the survival of leukemic mice in part by inhibiting the nuclear translocation of Stat5. These results reveal a leukemic pathway involving FAK/Tiam1/Rac1/PAK1 and demonstrate an essential role for these signaling molecules in regulating the nuclear translocation of Stat5 in leukemogenesis.