Hypophosphatasia is a rare inborn error of metabolism characterized by low serum alkaline phosphatase activity due to loss-of-function mutations in the gene encoding the tissue-nonspecific isoenzyme of alkaline phosphatase (TNSALP). Extracellular accumulation of TNSALP substrates leads to dento-osseous and arthritic complications featuring tooth loss, rickets or osteomalacia, and calcific arthopathies. Mild hypophosphatasia usually has autosomal dominant inheritance, severe cases are either autosomal recessive or due to a dominant negative effect. Clinical manifestations of hypophosphatasia are extremely variable, ranging from life threatening to asymptomatic clinical presentations. The clinical presentation of the adult-onset hypophosphatasia is highly variable. Fractures, joint complications of chondrocalcinosis, calcifying polyarthritis and multiple pains may reveal minor forms of the disease in adults. It is important to recognize the disease to provide the best supportive treatment and to prevent the use of anti-resorption drugs in these patients. Bone-targeted enzyme-replacement therapy (asfotase alfa) was approved in 2015 to treat pediatric-onset hypophosphatasia. We present a case of a 41-year-old male diagnosed with adult form of hypophosphatasia with a rare ALPL mutation that has been previously described only once and review the literature on the adult form of the disease and its genetic mechanism.
We report here the case of the youngest patient with adenomyomatosis of the gallbladder in a female infant diagnosed at 4 months of age. This diagnosis was made based on characteristic ultrasonography findings in a patient that was undergoing routine surveillance for a suspected clinical diagnosis of Beckwith-Wiedemann syndrome. The patient remains asymptomatic and currently no surgical interventions have been needed. We review the pathophysiology and ultrasonographic findings of this rare condition and present a comparison with the only other four pediatric cases of adenomyomatosis of the gallbladder.
Purpose: Family history is associated with gliomas, but this association has not been established for benign brain tumors. Using information from newly diagnosed primary brain tumor patients, we describe patterns of family cancer histories in patients with benign brain tumors and compare those to patients with gliomas. Methods: Newly diagnosed primary brain tumor patients were identified as part of the Ohio Brain Tumor Study. Each patient was asked to participate in a telephone interview about personal medical history, family history of cancer, and other exposures. Information was available from 33 acoustic neuroma (65%), 78 meningioma (65%), 49 pituitary adenoma (73.1%), and 152 glioma patients (58.2%). The association between family history of cancer and each subtype was compared with gliomas using unconditional logistic regression models generating odds ratios (ORs) and 95% confidence intervals. Results: There was no significant difference in family history of cancer between patients with glioma and benign subtypes. Conclusion: The results suggest that benign brain tumor may have an association with family history of cancer. More studies are warranted to disentangle the potential genetic and/or environmental causes for these diseases.
Introduction. The pentalogy of Cantrell is rare clustering of congenital defects, first described by Cantrell and colleagues in 1958. The exact pathogenesis for the pentalogy remains unknown and no specific genetic abnormalities have been correlated; however, a failure of embryogenesis has been suspected. The microduplication of chromosome 15q21.3 (57,529,846 to 58,949,448) found in our patient with pentalogy of Cantrell has not been described previously. Case presentation. We describe a case of a newborn Caucasian male baby with prenatally diagnosed pentalogy of Cantrell and a novel maternally inherited copy number variant detected by chromosome microarray analysis. Among the genes within the duplicated region is ALDH1A2, encoding the enzyme retinaldehyde dehydrogenase type 2. Conclusion: Vital for retinoic acid synthesis during early development, ALDH1A2 has previously been demonstrated in animal models to have a strong association with congenital heart disease and diaphragmatic hernia, two key elements comprising pentalogy of Cantrell. It is possible that perturbation of retinoic acid levels during development secondary to this microduplication could underlie the pathology observed in the current case of pentalogy of Cantrell.
by
Jaime Vengoechea Barrios;
Xiaowei Guan;
Jaime Vengoechea;
Siyuan Zheng;
Andrew E. Sloan;
Yanwen Chen;
Daniel Brat;
Brian Patrick O'Neill;
John de Groot;
Shlomit Yust-Katz;
Wai-Kwan Alfred Yung;
Mark L. Cohen;
Kenneth D. Aldape;
Steven Rosenfeld;
Roeland G.W. Verhaak;
Jill S. Barnholtz-Sloan
Background: Gliomas are the most common primary malignant brain tumors in adults with great heterogeneity in histopathology and clinical course. The intent was to evaluate the relevance of known glioblastoma (GBM) expression and methylation based subtypes to grade II and III gliomas (ie. lower grade gliomas). Methods: Gene expression array, single nucleotide polymorphism (SNP) array and clinical data were obtained for 228 GBMs and 176 grade II/II gliomas (GII/III) from the publically available Rembrandt dataset. Two additional datasets with IDH1 mutation status were utilized as validation datasets (one publicly available dataset and one newly generated dataset from MD Anderson). Unsupervised clustering was performed and compared to gene expression subtypes assigned using the Verhaak et al 840-gene classifier. The glioma-CpG Island Methylator Phenotype (G-CIMP) was assigned using prediction models by Fine et al. Results: Unsupervised clustering by gene expression aligned with the Verhaak 840-gene subtype group assignments. GII/IIIs were preferentially assigned to the proneural subtype with IDH1 mutation and G-CIMP. GBMs were evenly distributed among the four subtypes. Proneural, IDH1 mutant, G-CIMP GII/III s had significantly better survival than other molecular subtypes. Only 6% of GBMs were proneural and had either IDH1 mutation or G-CIMP but these tumors had significantly better survival than other GBMs. Copy number changes in chromosomes 1p and 19q were associated with GII/IIIs, while these changes in CDKN2A, PTEN and EGFR were more commonly associated with GBMs. Conclusions: GBM gene-expression and methylation based subtypes are relevant for GII/III s and associate with overall survival differences. A better understanding of the association between these subtypes and GII/IIIs could further knowledge regarding prognosis and mechanisms of glioma progression.