To examine how the chemotactic agent stromal cell-derived factor-1alpha (SDF-1α) modulates the unique cellular milieu within rotator cuff muscle following tendon injury, we developed an injectable, heparin-based microparticle platform to locally present SDF-1α within the supraspinatus muscle following severe rotator cuff injury. SDF-1α-loaded, degradable, N-desulfated heparin-based microparticles were fabricated, injected into a rat model of severe rotator cuff injury, and retained for up to 7 days at the site. The resultant inflammatory cell and mesenchymal stem cell populations were analyzed compared to uninjured contralateral controls, and after 7 days, the fold change in anti-inflammatory, M2-like macrophages (CD11b+CD68+CD163+, 4.3× fold change) and mesenchymal stem cells (CD29+CD44+CD90+, 3.0×) was significantly greater in muscles treated with SDF-1α-loaded microparticles than unloaded microparticles or injury alone. Our results indicate that SDF-1α-loaded microparticles may be a novel approach to shift the cellular composition within the supraspinatus muscle and create a more pro-regenerative milieu, which may provide a platform to improve muscle repair following rotator cuff injury in the future. Lay Summary: Following rotator cuff injury, significant muscle degeneration is common and can increase the likelihood of re-tear following surgical treatment. Therefore, we aimed to establish a more pro-healing microenvironment within the muscle following rotator cuff injury by developing an injectable, degradable biomaterial system to deliver stromal cell-derived factor-1alpha (SDF-1α), a protein known to attract pro-healing cell populations. After 7 days, a 4.3× increase in anti-inflammatory, M2-like macrophages (CD11b+CD68+CD163+) and a 3.0× increase in mesenchymal stem cells (CD29+CD44+CD90+) were observed in muscles treated with our SDF-1α-loaded biomaterial, suggesting that our biomaterial system may be a method to shift the cellular composition and create a more pro-regenerative microenvironment within muscle after rotator cuff injury. Future Work Statement: Future work will investigate the ability for SDF-1α-loaded microparticles, which were shown in this work to recruit anti-inflammatory, M2-like macrophages and mesenchymal stem cells to the supraspinatus muscle following rotator cuff injury, to reduce muscle degeneration and improve muscle function after tendon tear. [Figure not available: see fulltext.].
Microtissues containing multiple cell types have been used in both in vitro models and in vivo tissue repair applications. However, to improve throughput, there is a need to develop a platform that supports self-assembly of a large number of 3D microtissues containing multiple cell types in a dynamic suspension system. Thus, the objective of this study was to exploit the binding interaction between the negatively charged glycosaminoglycan, heparin, and a known heparin binding peptide to establish a method that promotes assembly of mesenchymal stem cell (MSC) spheroids into larger aggregates. We characterized heparin binding peptide (HEPpep) and heparin coatings on cell surfaces and determined the specificity of these coatings in promoting assembly of MSC spheroids in dynamic culture. Overall, combining spheroids with both coatings promoted up to 70 ± 11% of spheroids to assemble into multiaggregate structures, as compared to only 10 ± 4% assembly when cells having the heparin coating were cultured with cells coated with a scrambled peptide. These results suggest that this self-assembly method represents an exciting approach that may be applicable for a wide range of applications in which cell aggregation is desired.
The etiology of rotator cuff tendon overuse injuries is still not well understood. Furthermore, how this overuse injury impacts other components of the glenohumeral joint, including nearby articular cartilage, is also unclear. Therefore, this study sought to better understand the time course of tendon protease activity in a rat model of supraspinatus overuse, as well as determine effects of 10 weeks of overuse on humeral head articular cartilage. For these studies, multiplex gelatin zymography was used to characterize protease activity profiles in tendon and cartilage, while histological scoring/mechanical testing and micro-computed tomography (μCT) imaging were used to quantify structural damage in the supraspinatus tendon insertion and humeral articular cartilage, respectively. Histological scoring of supraspinatus tendon insertions revealed tendinopathic cellular and collagen fiber changes after 10 weeks of overuse when compared to controls, while mechanical testing revealed no significant differences between tensile moduli (overuse: 24.5 ± 11.5 MPa; control: 16.3 ± 8.7 MPa). EPIC-μCT imaging on humeral articular cartilage demonstrated significant cartilage thinning (overuse: 119.6 ± 6.34 μm; control: 195.4 ± 13.4μm), decreased proteoglycan content (overuse: 2.1 ± 0.18 cm−1; control: 1.65 ± 0.14 cm−1), and increased subchondral bone thickness (overuse: 216.2 ± 10.9 μm; control: 192 ± 17.8μm) in the overuse animals. Zymography results showed no significant upregulation of cathepsins or matrix metalloproteinases in tendon or cartilage at 2 or 10 weeks of overuse compared to controls. These results have further elucidated timing of protease activity over 10 weeks and suggest that damage occurs to other tissues in addition to the supraspinatus tendon in this overuse injury model.
Degradation of extracellular matrix (ECM) during tendinopathy is, in part, mediated by the collagenolytic cathepsin K (catK) and cathepsin L (catL), with a temporal component to their activity. The objective of this study was to determine how catK and catL act in concert or in conflict to degrade collagen and tendon ECM during tissue degeneration. To do so, type I collagen gels or ECM extracted from apolipoprotein E deficient mouse Achilles tendons were incubated with catK and catL either concurrently or sequentially, incubating catK first, then catL after a delayed time period. Sequential incubation of catK then catL caused greater degradation of substrates over concurrent incubation, and of either cathepsin alone. Zymography showed there were reduced amounts of active enzymes when co-incubated, indicating that cannibalism, or protease-on-protease degradation between catK and catL was occurring, but incubation with ECM could distract from these interactions. CatK alone was sufficient to quickly degrade tendon ECM, but catL was not, requiring the presence of catK for degradation. Together, these data identify cooperative and conflicting actions of cathepsin mediated collagen matrix degradation by considering interactive effects of multiple proteases during tissue degeneration.
Protein delivery is often used in tissue engineering applications to control differentiation processes, but is limited by protein instability and cost. An alternative approach is to control the cellular microenvironment through biomaterial-mediated sequestration of cell-secreted proteins important to differentiation. Thus, we utilized heparin-based microparticles to modulate cellular differentiation via protein sequestration in an in vitro model system of endochondral ossification. Heparin and poly(ethylene-glycol) (PEG; a low-binding material control)-based microparticles were incorporated into ATDC5 cell spheroids or incubated with ATDC5 cells in transwell culture. Reduced differentiation was observed in the heparin microparticle group as compared to PEG and no microparticle-containing groups. To determine if observed changes were due to sequestration of cell-secreted protein, the proteins sequestered by heparin microparticles were analyzed using SDS-PAGE and mass spectrometry. It was found that heparin microparticles bound insulin-like growth factor binding proteins (IGFBP)-3 and 5. When incubated with a small-molecule inhibitor of IGFBPs, NBI 31772, a similar delay in differentiation of ATDC5 cells was observed. These results indicate that heparin microparticles modulated chondrocytic differentiation in this system via sequestration of cell-secreted protein, a technique that could be beneficial in the future as a means to control cellular differentiation processes. Statement of Significance: In this work, we present a proof-of-principle set of experiments in which heparin-based microparticles are shown to modulate cellular differentiation through binding of cell-secreted protein. Unlike existing systems that rely on expensive protein with limited half-lives to elicit changes in cellular behavior, this technique focuses on temporal modulation of cell-generated proteins. This technique also provides a biomaterials-based method that can be used to further identify sequestered proteins of interest. Thus, this work indicates that glycosaminoglycan-based biomaterial approaches could be used as substitutes or additions to traditional methods for modulating and identifying the cell-secreted proteins involved in directing cellular behavior.
Sulfated glycosaminoglycans (GAGs) are known to interact electrostatically with positively charged growth factors to modulate signaling. Therefore, regulating the degree of sulfation of GAGs may be a promising approach to tailor biomaterial carriers for controlled growth factor delivery and release. For this study, chondroitin sulfate (CS) was first desulfated to form chondroitin, and resulting crosslinked CS and chondroitin hydrogels were examined invitro for release of positively charged model protein (histone) and for their effect on cartilaginous differentiation of encapsulated human mesenchymal stem cells (MSCs). Desulfation significantly increased the release of histone from chondroitin hydrogels (30.6±2.3μg released over 8 days, compared to natively sulfated CS with 20.2±0.8μg), suggesting that sulfation alone plays a significant role in modulating protein interactions with GAG hydrogels. MSCs in chondroitin hydrogels significantly upregulated gene expression of collagen II and aggrecan by day 21 in chondrogenic medium (115±100 and 23.1±7.9 fold upregulation of collagen II and aggrecan, respectively), compared to CS hydrogels and PEG-based swelling controls, indicating that desulfation may actually enhance the response of MSCs to soluble chondrogenic cues, such as TGF-β1. Thus, desulfated chondroitin materials present a promising biomaterial tool to further investigate electrostatic GAG/growth factor interactions, especially for repair of cartilaginous tissues.
Development of multifunctional biomaterials that sequester, isolate, and redeliver cell-secreted proteins at a specific timepoint may be required to achieve the level of temporal control needed to more fully regulate tissue regeneration and repair. In response, we fabricated core-shell heparin-poly(ethylene-glycol) (PEG) microparticles (MPs) with a degradable PEG-based shell that can temporally control delivery of protein-laden heparin MPs. Core-shell MPs were fabricated via a re-emulsification technique and the number of heparin MPs per PEG-based shell could be tuned by varying the mass of heparin MPs in the precursor PEG phase. When heparin MPs were loaded with bone morphogenetic protein-2 (BMP-2) and then encapsulated into core-shell MPs, degradable core-shell MPs initiated similar C2C12 cell alkaline phosphatase (ALP) activity as the soluble control, while non-degradable core-shell MPs initiated a significantly lower response (85 + 19% vs. 9.0 + 4.8% of the soluble control, respectively). Similarly, when degradable core-shell MPs were formed and then loaded with BMP-2, they induced a ∼7-fold higher C2C12 ALP activity than the soluble control. As C2C12 ALP activity was enhanced by BMP-2, these studies indicated that degradable core-shell MPs were able to deliver a bioactive, BMP-2-laden heparin MP core. Overall, these dynamic core-shell MPs have the potential to sequester, isolate, and then redeliver proteins attached to a heparin core to initiate a cell response, which could be of great benefit to tissue regeneration applications requiring tight temporal control over protein presentation. Statement of Significance Tissue repair requires temporally controlled presentation of potent proteins. Recently, biomaterial-mediated binding (sequestration) of cell-secreted proteins has emerged as a strategy to harness the regenerative potential of naturally produced proteins, but this strategy currently only allows immediate amplification and re-delivery of these signals. The multifunctional, dynamic core-shell heparin-PEG microparticles presented here overcome this limitation by sequestering proteins through a PEG-based shell onto a protein-protective heparin core, temporarily isolating bound proteins from the cellular microenvironment, and re-delivering proteins only after degradation of the PEG-based shell. Thus, these core-shell microparticles have potential to be a novel tool to harness and isolate proteins produced in the cellular environment and then control when proteins are re-introduced for the most effective tissue regeneration and repair.
Rotator cuff tears cause muscle degeneration that is characterized by myofiber atrophy, fatty infiltration, and fibrosis and is minimally responsive to current treatment options. The underlying pathogenesis of rotator cuff muscle degeneration remains to be elucidated, and increasing evidence implicates immune cell infiltration as a significant factor. Because immune cells are comprised of highly heterogeneous subpopulations that exert divergent effects on injured tissue, understanding trafficking and accumulation of immune subpopulations may hold the key to more effective therapies. The present study quantifies subpopulations of immune cells infiltrating the murine supraspinatus muscle after severe rotator cuff injury that includes tenotomy and denervation. Rotator cuff injury stimulates dramatic infiltration of mononuclear phagocytes, enriches mononuclear phagocytes in non-classical subpopulations, and enriches T lymphocytes in TH and Treg subpopulations. The combination of tenotomy plus denervation significantly increases mononuclear phagocyte infiltration, enriches macrophages in the non-classical subpopulation, and decreases T lymphocyte enrichment in TH cells compared to tenotomy alone. Depletion of circulating monocytes via liposomal clodronate accelerates supraspinatus atrophy after tenotomy and denervation. The study may aid rational design of immunologically smart therapies that harness immune cells to enhance outcomes after rotator cuff tears.
Sustained release of anti-inflammatory agents remains challenging for small molecule drugs due to their low molecular weight and hydrophobicity. Therefore, the goal of this study was to control the release of a small molecule anti-inflammatory agent, crystal violet (CV), from hydrogels fabricated with heparin, a highly sulfated glycosaminoglycan capable of binding positively-charged molecules such as CV. In this system, both electrostatic interactions between heparin and CV and hydrogel degradation were tuned simultaneously by varying the level of heparin sulfation and varying the amount of dithiothreitol within hydrogels, respectively. It was found that heparin sulfation significantly affected CV release, whereby more sulfated heparin hydrogels (Hep and Hep -N ) released CV with near zero-order release kinetics (R-squared values between 0.96-0.99). Furthermore, CV was released more quickly from fast-degrading hydrogels than slow-degrading hydrogels, providing a method to tune total CV release between 5-15 days while maintaining linear release kinetics. In particular, N-desulfated heparin hydrogels exhibited efficient CV loading (∼90% of originally included CV), near zero-order CV release kinetics, and maintenance of CV bioactivity after release, making this hydrogel formulation a promising CV delivery vehicle for a wide range of inflammatory diseases.
Glycosaminoglycans (GAGs) such as heparin are promising materials for growth factor delivery due to their ability to efficiently bind positively charged growth factors including bone morphogenetic protein-2 (BMP-2) through their negatively charged sulfate groups. Therefore, the goal of this study was to examine BMP-2 release from heparin-based microparticles (MPs) after first, incorporating a hydrolytically degradable crosslinker and varying heparin content within MPs to alter MP degradation and second, altering the sulfation pattern of heparin within MPs to vary BMP-2 binding and release. Using varied MP formulations, it was found that the time course of MP degradation for 1 wt% heparin MPs was ∼4 days slower than 10 wt% heparin MPs, indicating that MP degradation was dependent on heparin content. After incubating 100 ng BMP-2 with 0.1 mg MPs, most MP formulations loaded BMP-2 with ∼50% efficiency and significantly more BMP-2 release (60% of loaded BMP-2) was observed from more sulfated heparin MPs (MPs with ∼100% and 80% of native sulfation). Similarly, BMP-2 bioactivity in more sulfated heparin MP groups was at least four-fold higher than soluble BMP-2 and less sulfated heparin MP groups, as determined by an established C2C12 cell alkaline phosphatase (ALP) assay. Ultimately, the two most sulfated 10 wt% heparin MP formulations were able to efficiently load and release BMP-2 while enhancing BMP-2 bioactivity, making them promising candidates for future growth factor delivery applications.