The newly identified retrovirus—the xenotropic murine leukemia virus-related virus (XMRV)—has recently been shown to be strongly associated with familial prostate cancer in humans (A. Urisman et al., PLoS Pathog. 2:e25, 2006). While that study showed evidence of XMRV infection exclusively in the prostatic stromal fibroblasts, a recent study found XMRV protein antigens mainly in malignant prostate epithelial cells (R. Schlaberg et al., Proc. Natl. Acad. Sci. U. S. A. 106:16351-16356, 2009). To help elucidate the mechanisms behind XMRV infection, we show that prostatic fibroblast cells express Xpr1, a known receptor of XMRV, but its expression is absent in other cell lines of the prostate (i.e., epithelial and stromal smooth muscle cells). We also show that certain amino acid residues located within the predicted extracellular loop (ECL3 and ECL4) sequences of Xpr1 are required for efficient XMRV entry. Although we found strong evidence to support XMRV infection of prostatic fibroblast cell lines via Xpr1, we learned that XMRV was indeed capable of infecting cells that did not necessarily express Xpr1, such as those of the prostatic epithelial and smooth muscle origins. Further studies suggest that the expression of Xpr1 and certain genotypes of the RNASEL gene, which could restrict XMRV infection, may play important roles in defining XMRV tropisms in certain cell types. Collectively, our data reveal important cellular determinants required for XMRV entry into different human prostate cells in vitro, which may provide important insights into the possible role of XMRV as an etiologic agent in human prostate cancer.
Background: Previous studies have found associations between mitochondrial DNA (mtDNA) mutations and several cancer types. Recently, we found that mutations in the mtDNA gene cytochrome c oxidase subunit 1 (COI) were both linked to and associated with prostate cancer (PCa) in Caucasian men. Here we examine the association between COI mutations and PCa in African American men.
Methods: The entire COI gene was directly sequenced in 132 PCa cases and 135 controls from the Flint Men’s Health Study, a community-based sample of African American men with and without PCa. Associations between all variants and PCa were evaluated.
Results: We identified 102 COI single nucleotide polymorphisms (SNPs), including 15 missense variants. Overall, the presence of one or more COI missense variants was not significantly associated with PCa. Individually, two SNPs (T6221C and T7389C) were significantly associated with prostate cancer (P < 0.05) and in strong linkage disequilibrium with each other (r2 > 0.6).
Conclusions: Of the two significantly associated SNPs, one is a synonymous substitution and the other is part of the African-specific mitochondrial haplogroup (L). Additional research will be needed to determine the clinical relevance of these associations in African populations.
An important challenge in prostate cancer research is to develop effective predictors of tumor recurrence following surgery to determine whether immediate adjuvant therapy is warranted. To identify biomarkers predictive of biochemical recurrence, we isolated the RNA from 70 formalin-fixed, paraffin-embedded radical prostatectomy specimens with known long-term outcomes to perform DASL expression profiling with a custom panel that we designed of 522 prostate cancer–relevant genes. We identified a panel of 10 protein-coding genes and two miRNA genes (RAD23B, FBP1, TNFRSF1A, CCNG2, NOTCH3, ETV1, BID, SIM2, LETMD1, ANXA1, miR-519d, and miR-647) that could be used to separate patients with and without biochemical recurrence (P < 0.001), as well as for the subset of 42 Gleason score 7 patients (P < 0.001). We performed an independent validation analysis on 40 samples and found that the biomarker panel was also significant at prediction of biochemical recurrence for all cases (P = 0.013) and for a subset of 19 Gleason score 7 cases (P = 0.010), both of which were adjusted for relevant clinical information including T-stage, prostate-specific antigen, and Gleason score. Importantly, these biomarkers could significantly predict clinical recurrence for Gleason score 7 patients. These biomarkers may increase the accuracy of prognostication following radical prostatectomy using formalin-fixed specimens.
Urine metabolomics profiling has potential for non-invasive RCC staging, in addition to pro-viding metabolic insights into disease progression. In this study, we utilized liquid chromatography-mass spectrometry (LC-MS), nuclear magnetic resonance (NMR), and machine learning (ML) for the discovery of urine metabolites associated with RCC progression. Two machine learning questions were posed in the study: Binary classification into early RCC (stage I and II) and advanced RCC stages (stage III and IV), and RCC tumor size estimation through regression analysis. A total of 82 RCC patients with known tumor size and metabolomic measurements were used for the regression task, and 70 RCC patients with complete tumor-nodes-metastasis (TNM) staging information were used for the classification tasks under ten-fold cross-validation conditions. A voting ensemble regression model consisting of elastic net, ridge, and support vector regressor predicted RCC tumor size with a R2 value of 0.58. A voting classifier model consisting of random forest, support vector machines, logistic regression, and adaptive boosting yielded an AUC of 0.96 and an accuracy of 87%. Some identified metabolites associated with renal cell carcinoma progression included 4-guanidinobutanoic acid, 7-aminomethyl-7-carbaguanine, 3-hydroxyanthranilic acid, lysyl-glycine, glycine, citrate, and pyruvate. Overall, we identified a urine metabolic phenotype associated with renal cell carcinoma stage, exploring the promise of a urine-based metabolomic assay for staging this disease.
Deletion of chromosome 6q14-q22 is common in multiple human cancers including prostate cancer, and chromosome 6 transferred into cancer cells induces senescence and reduces cell growth, tumorigenicity and metastasis, indicating the existence of one or more tumor suppressor genes in 6q. To identify the 6q tumor suppressor gene, we first narrowed the common region of deletion to a 2.5-Mb interval at 6q14-15. Of the 11 genes located in this minimal deletion region and expressed in normal prostates, only snoRNA U50 was mutated, demonstrated transcriptional downregulation, and inhibited colony formation in prostate cancer cells. The mutation, a homozygous 2-bp (TT) deletion, was found in 2 of 30 prostate cancer cell lines/xenografts and 9 of 89 localized prostate cancers (11 of 119 or 9% cancers). Two of 89 (2%) patients with prostate cancer also showed the same mutation in their germline DNA, but none of 104 cancer-free control men did. The homozygous deletion abolished U50 function in a colony formation assay. Analysis of 1371 prostate cancer cases and 1371 matched control men from a case-control study nested in a prospective cohort showed that, although a germline heterozygous genotype of the deletion was detected in both patients and controls at similar frequencies, the homozygosity of the deletion was significantly associated with clinically significant prostate cancer (odds ratio = 2.9, 95% confidence interval = 1.17 – 7.21). These findings establish snoRNA U50 as a reasonable candidate for the 6q tumor suppressor gene in prostate cancer and likely in other types of cancers.
Prostate cancer remains the second leading cause of cancer death in American men and there is an unmet need for biomarkers to identify patients with aggressive disease. In an effort to identify biomarkers of recurrence, we performed global RNA sequencing on 106 formalin-fixed, paraffin-embedded prostatectomy samples from 100 patients at three independent sites, defining a 24-gene signature panel. The 24 genes in this panel function in cell-cycle progression, angiogenesis, hypoxia, apoptosis, PI3K signaling, steroid metabolism, translation, chromatin modification, and transcription. Sixteen genes have been associated with cancer, with five specifically associated with prostate cancer (BTG2, IGFBP3, SIRT1, MXI1, and FDPS). Validation was performed on an independent publicly available dataset of 140 patients, where the new signature panel outperformed markers published previously in terms of predicting biochemical recurrence. Our work also identified differences in gene expression between Gleason pattern 4 + 3 and 3 + 4 tumors, including several genes involved in the epithelial-to-mesenchymal transition and developmental pathways. Overall, this study defines a novel biomarker panel that has the potential to improve the clinical management of prostate cancer.
Background
Xenotropic murine leukemia virus-related virus (XMRV) was recently discovered to be the first human gammaretrovirus that is associated with chronic fatigue syndrome and prostate cancer (PC). Although a mechanism for XMRV carcinogenesis is yet to be established, this virus belongs to the family of gammaretroviruses well known for their ability to induce cancer in the infected hosts. Since its original identification XMRV has been detected in several independent investigations; however, at this time significant controversy remains regarding reports of XMRV detection/prevalence in other cohorts and cell type/tissue distribution. The potential risk of human infection, coupled with the lack of knowledge about the basic biology of XMRV, warrants further research, including investigation of adaptive immune responses. To study immunogenicity in vivo, we vaccinated mice with a combination of recombinant vectors expressing codon-optimized sequences of XMRV gag and env genes and virus-like particles (VLP) that had the size and morphology of live infectious XMRV.
Results
Immunization elicited Env-specific binding and neutralizing antibodies (NAb) against XMRV in mice. The peak titers for ELISA-binding antibodies and NAb were 1[ratio]1024 and 1[ratio]464, respectively; however, high ELISA-binding and NAb titers were not sustained and persisted for less than three weeks after immunizations.
Conclusions
Vaccine-induced XMRV Env antibody titers were transiently high, but their duration was short. The relatively rapid diminution in antibody levels may in part explain the differing prevalences reported for XMRV in various prostate cancer and chronic fatigue syndrome cohorts. The low level of immunogenicity observed in the present study may be characteristic of a natural XMRV infection in humans.
by
Subhasish Tapadar;
Shaghayegh Fathi;
Bocheng Wu;
Carrie Q. Sun;
Idris Raji;
Samuel G. Moore;
Rebecca Arnold;
David A. Gaul;
John Petros;
Adegboyega K. Oyelere
Dysfunctions in epigenetic regulation play critical roles in tumor development and progression. Histone deacetylases (HDACs) and histone acetyl transferase (HAT) are functionally opposing epigenetic regulators, which control the expression status of tumor suppressor genes. Upregulation of HDAC activities, which results in silencing of tumor suppressor genes and uncontrolled proliferation, predominates in malignant tumors. Inhibition of the deacetylase activity of HDACs is a clinically validated cancer therapy strategy. However, current HDAC inhibitors (HDACi) have elicited limited therapeutic benefit against solid tumors. Here, we disclosed a class of HDACi that are selective for sub-class I HDACs and preferentially accumulate within the normal liver tissue and orthotopically implanted liver tumors. We observed that these compounds possess exquisite on-target effects evidenced by their induction of dose-dependent histone H4 hyperacetylation without perturbation of tubulin acetylation status and G0/G1 cell cycle arrest. Representative compounds 2 and 3a are relatively non-toxic to mice and robustly suppressed tumor growths in an orthotopic model of HCC as standalone agents. Collectively, our results suggest that these compounds may have therapeutic advantage against HCC relative to the current systemic HDACi. This prospect merits further comprehensive preclinical investigations.
Background: Patients with locally advanced or recurrent prostate cancer typically undergo androgen deprivation therapy (ADT), but the benefits are often short-lived and the responses variable. ADT failure results in castration-resistant prostate cancer (CRPC), which inevitably leads to metastasis. We hypothesized that differences in tumor transcriptional programs may reflect differential responses to ADT and subsequent metastasis. Results: We performed whole transcriptome analysis of 20 patient-matched Pre-ADT biopsies and 20 Post-ADT prostatectomy specimens, and identified two subgroups of patients (high impact and low impact groups) that exhibited distinct transcriptional changes in response to ADT. We found that all patients lost the AR-dependent subtype (PCS2) transcriptional signatures. The high impact group maintained the more aggressive subtype (PCS1) signal, while the low impact group more resembled an AR-suppressed (PCS3) subtype. Computational analyses identified transcription factor coordinated groups (TFCGs) enriched in the high impact group network. Leveraging a large public dataset of over 800 metastatic and primary samples, we identified 33 TFCGs in common between the high impact group and metastatic lesions, including SOX4/FOXA2/GATA4, and a TFCG containing JUN, JUNB, JUND, FOS, FOSB, and FOSL1. The majority of metastatic TFCGs were subsets of larger TFCGs in the high impact group network, suggesting a refinement of critical TFCGs in prostate cancer progression. Conclusions: We have identified TFCGs associated with pronounced initial transcriptional response to ADT, aggressive signatures, and metastasis. Our findings suggest multiple new hypotheses that could lead to novel combination therapies to prevent the development of CRPC following ADT.
Enigmol is a synthetic, orally active 1-deoxysphingoid base analogue that has demonstrated promising activity against prostate cancer. In these studies, the pharmacologic roles of stereochemistry and N-methylation in the structure of enigmols were examined. A novel enantioselective synthesis of all four possible 2S-diastereoisomers of enigmol (2-aminooctadecane-3,5-diols) from l-alanine is reported, which features a Liebeskind−Srogl cross-coupling reaction between l-alanine thiol ester and (E)-pentadec-1-enylboronic acid as the key step. In vitro biological evaluation of the four enigmol diastereoisomers and 2S,3S,5S-N-methylenigmol against two prostate cancer cell lines (PC-3 and LNCaP) indicates that all but one diastereomer demonstrate potent oncolytic activity. In nude mouse xenograft models of human prostate cancer, enigmol was equally effective as standard prostate cancer therapies (androgen deprivation or docetaxel), and two of the enigmol diastereomers, 2S,3S,5R-enigmol and 2S,3R,5S-enigmol, also caused statistically significant inhibition of tumor growth. A pharmacokinetic profile of enigmol and N-methylenigmol is also presented.