Elevated nocturnal blood pressure (BP) and nocturnal non-dipping are frequently observed in patients with chronic kidney disease (CKD) and are stronger predictors of cardiovascular complications and CKD progression than standard office BP. The sympathetic nervous system (SNS) is thought to modulate diurnal hemodynamic changes and the vascular endothelium plays a fundamental role in BP regulation. We hypothesized that SNS overactivity and endothelial dysfunction in CKD are linked to elevated nocturnal BP and non-dipping. In 32 CKD patients with hypertension (56 ± 7 years), office BP, 24-hr ambulatory BP, muscle sympathetic nerve activity (MSNA) and endothelial function via flow-mediated dilation (FMD) were measured. Participants were subsequently divided into dippers (nighttime average BP > 10% lower than the daytime average BP, n = 8) and non-dippers (n = 24). Non-dippers had higher nighttime BP (p <.05), but not office and daytime BP, compared to dippers. MSNA burst incidence (81 ± 13 versus 67 ± 13 bursts/100 HR, p =.019) was higher and brachial artery FMD (1.7 ± 1.5 versus 4.7 ± 1.9%, p <.001) was lower in non-dippers compared to dippers. MSNA and FMD each predicted nighttime systolic (β = 0.48,-0.46, p =.02, 0.07, respectively) and diastolic BP (β = 0.38,-0.47, p =.04, 0.03, respectively) in multivariate-adjusted analyses. Our novel findings demonstrate that unfavorable nocturnal BP profiles are associated with elevated SNS activity and endothelial dysfunction in CKD. Specifically, CKD patients with higher nighttime BP and the non-dipping pattern have higher MSNA and lower FMD. These support our hypothesis that SNS overactivation and endothelial dysfunction are linked to the dysregulation of nighttime BP as well as the magnitude of BP lowering at nighttime in CKD.
Physiological Reports published by Wiley Periodicals, Inc. on behalf of The Physiological Society and the American Physiological Society. Elevated Resting Blood Pressure (ERBP) in the prehypertensive range is associated with increased risk of hypertension and cardiovascular disease, the mechanisms of which remain unclear. Prior studies have suggested that ERBP may be associated with overactivation and dysregulation of the sympathetic nervous system (SNS). We hypothesized that compared to normotensives (≤120/80 mmHg), ERBP (120/80-139/89 mmHg) has higher SNS activity, impaired arterial baroreflex sensitivity (BRS), and increased vascular inflammation. Twenty-nine participants were studied: 16 otherwise healthy individuals with ERBP (blood pressure (BP) 130 ± 2/85 ± 2 mmHg) and 13 matched normotensive controls (mean BP 114 ± 2/73 ± 2 mmHg). We measured muscle sympathetic nerve activity (MSNA), beat-to-beat BP, and continuous electrocardiogram at rest and during arterial BRS testing via the modified Oxford technique. Blood was analyzed for the following biomarkers of vascular inflammation: lipoprotein-associated phospholipase A2 (Lp-PLA2), E-selectin, and intercellular adhesion molecule 1 (ICAM-1). Resting MSNA burst frequency (22 ± 2 vs. 16 ± 2 bursts/min, P = 0.036) and burst incidence (36 ± 3 vs. 25 ± 3 bursts/100 heart beats, P = 0.025) were higher in ERBP compared to controls. Cardiovagal BRS was blunted in ERBP compared to controls (13 ± 2 vs. 20 ± 3 msec/mmHg, P = 0.032), while there was no difference in sympathetic BRS between groups. Lp-PLA2 (169 ± 8 vs. 142 ± 9 nmol/min/mL, P = 0.020) and E-selectin (6.89 ± 0.6 vs. 4.45 ± 0.51 ng/mL, P = 0.004) were higher in ERBP versus controls. E-selectin (r = 0.501, P = 0.011) and ICAM-1 (r = 0.481, P = 0.015) were positively correlated with MSNA, while E-selectin was negatively correlated with cardiovagal BRS (r = -0.427, P = 0.030). These findings demonstrate that individuals with ERBP have SNS overactivity and impaired arterial BRS that are linked to biomarkers of vascular inflammation.
Background:
End stage renal disease (ESRD) is characterized by autonomic dysfunction. During orthostatic stress, sympathetic (SNS) activity increases and parasympathetic (PNS) activity decreases to maintain arterial blood pressure (BP). We hypothesized that ESRD patients have impaired ability to adjust cardiac SNS and PNS activity during orthostasis, which could contribute to increased blood pressure variability, orthostatic intolerance and falls.
Methods:
We measured beat-to-beat BP and Electrocardiography at baseline and during increasing lower body negative pressure (LBNP) in 20 ESRD patients and 18 matched controls (CON). Heart rate variability was quantified as total power (TP) and standard deviation of the N-N interval, reflecting both SNS and PNS; high frequency (HF), root mean square of successive differences of neighboring N-N intervals (RMSSD), and percent of consecutive N-N intervals differing >50 milliseconds (pNN50), reflecting cardiac PNS activity; and low frequency (LF) and LF/HF, reflecting sympoathovagal balance. BP variability was quantified as the standard deviation in systolic (SDSAP) and diastolic (SDDAP) BP.
Results:
Baseline HF, RMSSD, and pNN50 were significantly lower in ESRD (P < 0.05). While CON had a significant decrease in HF (P = 0.015), RMSSD (P = 0.003), and pNN50 (P = 0.005) during LBNP, there was no change in heart rate variability in ESRD. There was no significant difference in BP response, but ESRD had a significantly blunted heart rate response during graded LBNP compared to controls (P < 0.001). There was no significant difference in SDSAP or SDDAP during LBNP between groups (P > 0.05).
Conclusions:
These data suggest that ESRD patients have impaired autonomic adjustments to orthostatic stress.
by
Matthew B. Young;
Leonard Howell;
Lauren Hopkins;
Cassandra Moshfegh;
Zhe Yu;
Lauren Clubb;
Jessica Seidenberg;
Jeanie Park;
Adam P. Swiercz;
Paul J. Marvar
Alterations in peripheral immune markers are observed in individuals with post-traumatic stress disorder (PTSD). PTSD is characterized in part by impaired extinction of fear memory for a traumatic experience. We hypothesized that fear memory extinction is regulated by immune signaling stimulated when fear memory is retrieved. The relationship between fear memory and the peripheral immune response was tested using auditory Pavlovian fear conditioning in mice. Memory for the association was quantified by the amount of conditioned freezing exhibited in response to the conditioned stimulus (CS), extinction and time-dependent changes in circulating inflammatory cytokines. Brief extinction training with 12 CS rapidly and acutely increased circulating levels of the cytokine interleukin-6 (IL-6), downstream IL-6 signaling, other IL-6 related pro-inflammatory cytokines. Transgenic manipulations or neutralizing antibodies that inhibit IL-6 activity did not affect conditioned freezing during the acquisition of fear conditioning or extinction but significantly reduced conditioned freezing 24 h after extinction training with 12 CS. Conversely, conditioned freezing after extinction training was unchanged by IL-6 inhibition when 40 CS were used during the extinction training session. In addition to effectively diminishing conditioned freezing, extinction training with 40 CS also diminished the subsequent IL-6 response to the CS. These data demonstrate that IL-6 released following fear memory retrieval contributes to the maintenance of that fear memory and that this effect is extinction dependent. These findings extend the current understanding for the role of the immune system in PTSD and suggest that IL-6 and other IL-6 related pro-inflammatory cytokines may contribute to the persistence of fear memory in PTSD where fear memory extinction is impaired.
BACKGROUND. Chronic kidney disease (CKD) is characterized by chronic overactivation of the sympathetic nervous system (SNS), which increases the risk of cardiovascular (CV) disease and mortality. SNS overactivity increases CV risk by multiple mechanisms, including vascular stiffness. We tested the hypothesis that aerobic exercise training would reduce resting SNS activity and vascular stiffness in patients with CKD. METHODS. In this randomized controlled trial, sedentary older adults with CKD underwent 12 weeks of exercise (cycling, n = 32) or stretching (an active control group, n = 26). Exercise and stretching interventions were performed 20-45 minutes/session at 3 days/week and were matched for duration. Primary endpoints include resting muscle sympathetic nerve activity (MSNA) via microneurography, arterial stiffness by central pulse wave velocity (PWV), and aortic wave reflection by augmentation index (AIx). RESULTS. There was a significant group × time interaction in MSNA and AIx with no change in the exercise group but with an increase in the stretching group after 12 weeks. The magnitude of change in MSNA was inversely associated with baseline MSNA in the exercise group. There was no change in PWV in either group over the study period. CONCLUSION. Our data demonstrate that 12 weeks of cycling exercise has beneficial neurovascular effects in patients with CKD. Specifically, exercise training safely and effectively ameliorated the increase in MSNA and AIx observed over time in the control group. This sympathoinhibitory effect of exercise training showed greater magnitude in patients with CKD with higher resting MSNA.
Background: Vagal Nerve Stimulation (VNS) has been shown to be efficacious for the treatment of depression, but to date, VNS devices have required surgical implantation, which has limited widespread implementation. Methods: New noninvasive VNS (nVNS) devices have been developed which allow external stimulation of the vagus nerve, and their effects on physiology in patients with stress-related psychiatric disorders can be measured with brain imaging, blood biomarkers, and wearable sensing devices. Advantages in terms of cost and convenience may lead to more widespread implementation in psychiatry, as well as facilitate research of the physiology of the vagus nerve in humans. nVNS has effects on autonomic tone, cardiovascular function, inflammatory responses, and central brain areas involved in modulation of emotion, all of which make it particularly applicable to patients with stress-related psychiatric disorders, including posttraumatic stress disorder (PTSD) and depression, since dysregulation of these circuits and systems underlies the symptomatology of these disorders. Results: This paper reviewed the physiology of the vagus nerve and its relevance to modulating the stress response in the context of application of nVNS to stress-related psychiatric disorders. Conclusions: nVNS has a favorable effect on stress physiology that is measurable using brain imaging, blood biomarkers of inflammation, and wearable sensing devices, and shows promise in the prevention and treatment of stress-related psychiatric disorders.
Background: Muscle wasting is a common complication of chronic kidney disease (CKD) that is associated with higher mortality. Although the mechanisms of myofibre loss in CKD has been widely studied, the contribution of muscle precursor cell (MPC) senescence remains poorly understood. Senescent MPCs no longer proliferate and can produce proinflammatory factors or cytokines. In this study, we tested the hypothesis that the senescence associated secretory phenotype (SASP) of MPCs contributes to CKD-induced muscle atrophy and weakness. Methods: CKD was induced in mice by 5/6th nephrectomy. Kidney function, muscle size, and function were measured, and markers of atrophy, inflammation, and senescence were evaluated using immunohistochemistry, immunoblots, or qPCR. To study the impact of senescence, a senolytics cocktail of dasatinib + quercetin (D&Q) was given orally to mice for 8 weeks. To investigate CKD-induced senescence at the cellular level, primary MPCs were incubated with serum from CKD or control subjects. The roles of specific proteins in MPC senescence were studied using adenoviral transduction, siRNA, and plasmid transfection. Results: In the hindlimb muscles of CKD mice, (i) the senescence biomarker SA-β-gal was sharply increased (~30-fold); (ii) the DNA damage response marker γ-H2AX was increased 1.9-fold; and (iii) the senescence pathway markers p21 and p16INK4a were increased 1.99-fold and 2.82-fold, respectively (all values, P < 0.05), whereas p53 was unchanged. γ-H2AX, p21, and p16INK4A were negatively correlated at P < 0.05 with gastrocnemius weight, suggesting a causal relationship with muscle atrophy. Administration of the senolytics cocktail to CKD mice for 8 weeks eliminated the disease-related elevation of p21, p16INK4a, and γ-H2AX, abolished positive SA-β-gal, and depressed the high levels of the SASP cytokines, TNF-α, IL-6, IL-1β, and IFN (all values, P < 0.05). Skeletal muscle weight, myofibre cross-sectional area, and grip function were improved in CKD mice receiving D&Q. Markers of protein degradation, inflammation, and MPCs dysfunction were also attenuated by D&Q treatment compared with the vehicle treatment in 5/6th nephrectomy mice (all values, P < 0.05). Uraemic serum induced senescence in cultured MPCs. Overexpression of FoxO1a in MPCs increased the number of p21+ senescent cells, and p21 siRNA prevented uraemic serum-induced senescence (P < 0.05). Conclusions: Senescent MPCs are likely to contribute to the development of muscle wasting during CKD by producing inflammatory cytokines. Limiting senescence with senolytics ameliorated muscle wasting and improved muscle strength in vivo and restored cultured MPC functions. These results suggest potential new therapeutic targets to improve muscle health and function in CKD.
Background: Chronic kidney disease (CKD) patients have exercise intolerance and exaggerated blood pressure reactivity during exercise that are mediated by sympathetic nervous system (SNS) overactivation and decreased nitric oxide (NO) bioavailability. The activation of the renin-angiotensin system (RAS) increases SNS activation and reduces NO synthesis, and prior studies suggest that RAS blockade attenuates declines in physical function. We hypothesized that RAS inhibitor (RASi) use is associated with higher exercise capacity mediated by decreased SNS activity and increased NO-dependent endothelial function in CKD. Method: In 35 CKD patients (57 ± 7 years) and 20 controls (CONs) (53 ± 8 years), we measured exercise capacity (peak oxygen consumption [VO2peak]), muscle sympathetic nervous activity (MSNA), and flow-mediated dilation (FMD) for NO-dependent endothelial function. Results: CKD patients treated with RASi (CKD + RASi, n = 25) had greater VO2peak than CKD patients not treated with RASi (CKD no RASi, n = 10), but lower VO2peak than CONs (23.3 ± 5.8 vs. 16.4 ± 2.9, p = 0.007; vs. 30.0 ± 7.7, p = 0.016 mL/min/kg, respectively). CKD + RASi had lower resting MSNA and greater FMD than CKD no RASi. Compared to CONs, CKD + RASi had similar MSNA but lower FMD. VO2peak was positively associated with FMD (r = 0.417, p = 0.038) and was predicted by the combination of FMD and RASi status (r2 = 0.344, p = 0.01) and MSNA and RASi status (r2 = 0.575, p = 0.040) in CKD patients. Conclusion: In summary, CKD patients with RASi have higher exercise capacity than those not on RASi. Higher exercise capacity in the RASi-treated group was associated with lower resting SNS activity and higher NO-dependent vascular endothelial function.
Post-traumatic stress disorder (PTSD) is characterized by a heightened emotional and physiological state and an impaired ability to suppress or extinguish traumatic fear memories. Exaggerated physiological responses may contribute to increased cardiovascular disease (CVD) risk in this population, but whether treatment for PTSD can offset CVD risk remains unknown. To further evaluate physiological correlates of fear learning, we used a novel pre-clinical conditioned cardiovascular testing paradigm and examined the effects of Pavlovian fear conditioning and extinction training on mean arterial pressure (MAP) and heart rate (HR) responses. We hypothesized that a fear conditioned cardiovascular response could be detected in a novel context and attenuated by extinction training. In a novel context, fear conditioned mice exhibited marginal increases in MAP (∼3 mmHg) and decreases in HR (∼20 bpm) during CS presentation. In a home cage context, the CS elicited significant increases in both HR (100 bpm) and MAP (20 mmHg). Following extinction training, the MAP response was suppressed while CS-dependent HR responses were variable. These pre-clinical data suggest that extinction learning attenuates the acute MAP responses to conditioned stimuli over time, and that MAP and HR responses may extinguish at different rates. These results suggest that in mouse models of fear learning, conditioned cardiovascular responses are modified by extinction training. Understanding these processes in pre-clinical disease models and in humans with PTSD may be important for identifying interventions that facilitate fear extinction and attenuate hyper-physiological responses, potentially leading to improvements in the efficacy of exposure therapy and PTSD–CVD comorbidity outcomes.
Introduction: End-stage renal disease (ESRD) patients with a paradoxical increase in blood pressure (BP) during hemodialysis (HD), termed intradialytic hypertension (ID-HTN), are at significantly increased risk for mortality and adverse cardiovascular events. ID-HTN affects up to 15% of all HD patients, and the pathophysiologic mechanisms remain unknown. We hypothesized that ESRD patients prone to ID-HTN have heightened volume-sensitive cardiopulmonary baroreflex sensitivity (BRS) that leads to exaggerated increases in sympathetic nervous system (SNS) activation during HD. Methods: We studied ESRD patients on maintenance HD with ID-HTN (n = 10) and without ID-HTN (controls, n = 12) on an interdialytic day, 24 to 30 hours after their last HD session. We measured continuous muscle sympathetic nerve activity (MSNA), beat-to-beat arterial BP, and electrocardiography (ECG) at baseline, and during graded lower body negative pressure (LBNP). Low-dose LBNP isolates cardiopulmonary BRS, whereas higher doses allow assessment of physiologic responses to orthostatic stress. Results: The ID-HTN patients had significantly higher pre- and post-HD BP, and greater interdialytic fluid weight gain compared to controls. There was a significantly greater increase in MSNA burst incidence (P = 0.044) during graded LBNP in the ID-HTN group, suggesting heightened cardiopulmonary BRS. The ID-HTN group also had a trend toward increased diastolic BP response during LBNP, and had significantly greater increases in BP during the cold pressor test. Conclusion: Patients with ID-HTN have augmented cardiopulmonary BRS that may contribute to increased SNS activation and BP response during HD.