Introduction Atypical meningiomas (AM) are meningiomas that are more aggressive than their grade-I counterparts and have a higher rate of recurrence. The effect of adjuvant radiotherapy (ART) on AM of the skull base is not defined. Methods A retrospective review of all AM's of the skull base primarily resected at our institution from 1996 to 2018 was completed. ART was defined as radiotherapy (RT) that occurred within 6 months of initial resection, regardless of Simpson's grade. Minimum time length of follow-up after resection was 2 years. Statistical analysis was performed using SAS. Results There were a total of 59 skull base-located (SBL) AMs resected at our institution from 1996 to 2018. The average age of our cohort was 53.2 years. Gross total resection, defined as Simpson's grades I to III resection, was achieved in 36 (61%) of cases. Thirty-five of 59 (59%) patients received ART. Recurrence was observed in 14 patients (24%), and mean time to recurrence was 63.8 months. Patients who received ART had a lower observed rate of recurrence (8 vs. 46%); however, time to recurrence was not significantly different between the two populations. Conclusion We observe that AM in the skull base location have higher recurrence rates than we would expect from grade-I meningioma. These data suggest that ART may offer benefit to the overall observed frequency of recurrence of SBL AM; however, the time to recurrence between patients who received ART and those who did not was not statistically significant in survival analysis.
Radiation is commonly used in the treatment of many cancers. However, its effects on anti-tumor immune responses are incompletely understood. Here, we present a detailed immunological analysis of two tumors from a patient with multiple non-small cell lung cancer metastases to the brain. One tumor was resected without treatment; the second was irradiated to a total dose of 30 Gy and resected following further progression. Comprehensive single-cell analysis reveals a substantially reduced immune cell fraction in the irradiated tumor, including the depletion of tissue-resident macrophages and infiltration of pro-inflammatory monocytes. Despite the presence of similar somatic mutations in both tumors, radiation is associated with the depletion of exhausted, tumor-resident T cell clones and their replacement by circulating clones unlikely to contribute to tumor-specific immunity. These results provide insight into the local effects of radiation on anti-tumor immunity and raise important considerations for the combination of radiation and immunotherapy.
Background: Resection of posterior fossa tumors (PFTs) can result in hydrocephalus that requires permanent cerebrospinal fluid (CSF) diversion. Our goal was to prospectively validate a machine-learning model to predict postoperative hydrocephalus after PFT surgery requiring permanent CSF diversion. Methods: We collected preoperative and postoperative variables on 518 patients that underwent PFT surgery at our center in a retrospective fashion to train several statistical classifiers to predict the need for permanent CSF diversion as a binary class. A total of 62 classifiers relevant to our data structure were surveyed, including regression models, decision trees, Bayesian models, and multilayer perceptron artificial neural networks (ANN). Models were trained using the (N = 518) retrospective data using 10-fold cross-validation to obtain accuracy metrics. Given the low incidence of our positive outcome (12%), we used the positive predictive value along with the area under the receiver operating characteristic curve (AUC) to compare models. The best performing model was then prospectively validated on a set of 90 patients. Results: Twelve percent of patients required permanent CSF diversion after PFT surgery. Of the trained models, 8 classifiers had an AUC greater than 0.5 on prospective testing. ANNs demonstrated the highest AUC of 0.902 with a positive predictive value of 83.3%. Despite comparable AUC, the remaining classifiers had a true positive rate below 35% (compared to ANN, P <. 0001). The negative predictive value of the ANN model was 98.8%. Conclusions: ANN-based models can reliably predict the need for ventriculoperitoneal shunt after PFT surgery.
Multidisciplinary tumor boards (TB) are an essential part of brain tumor care, but quantifying the impact of imaging on patient management is challenging due to treatment complexity and a lack of quantitative outcome measures. This work uses a structured reporting system for classifying brain tumor MRIs, the brain tumor reporting and data system (BT-RADS), in a TB setting to prospectively assess the impact of imaging review on patient management. Published criteria were used to prospectively assign three separate BT-RADS scores (an initial radiology report, secondary TB presenter review, and TB consensus) to brain MRIs reviewed at an adult brain TB. Clinical recommendations at TB were noted and management changes within 90 days after TB were determined by chart review. In total, 212 MRIs in 130 patients (median age = 57 years) were reviewed. Agreement was 82.2% between report and presenter, 79.0% between report and consensus, and 90.1% between presenter and consensus. Rates of management change increased with increasing BT-RADS scores (0—3.1%, 1a—0%, 1b—66.7%, 2—8.3%, 3a—38.5%, 3b—55.9, 3c—92.0%, and 4—95.6%). Of 184 (86.8%) cases with clinical follow-up within 90 days after the tumor board, 155 (84.2%) of the recommendations were implemented. Structured scoring of MRIs provides a quantitative way to assess rates of agreement interpretation alongside how often management changes are recommended and implemented in a TB setting.
Malignant gliomas are the most common and deadly brain tumors. Nevertheless, survival for patients with glioblastoma, the most aggressive glioma, although individually variable, has improved from an average of 10 months to 14 months after diagnosis in the last 5 years due to improvements in the standard of care. Radiotherapy has been of key importance to the treatment of these lesions for decades, and the ability to focus the beam and tailor it to the irregular contours of brain tumors and minimize the dose to nearby critical structures with intensity-modulated or image-guided techniques has improved greatly. Temozolomide, an alkylating agent with simple oral administration and a favorable toxicity profile, is used in conjunction with and after radiotherapy. Newer surgical techniques, such as fluorescence-guided resection and neuroendoscopic approaches, have become important in the management of malignant gliomas. Furthermore, new discoveries are being made in basic and translational research, which are likely to improve this situation further in the next 10 years. These include agents that block 1 or more of the disordered tumor proliferation signaling pathways, and that overcome resistance to already existing treatments. Targeted therapies such as antiangiogenic therapy with antivascular endothelial growth factor antibodies (bevacizumab) are finding their way into clinical practice. Large-scale research efforts are ongoing to provide a comprehensive understanding of all the genetic alterations and gene expression changes underlying glioma formation. These have already refined the classification of glioblastoma into 4 distinct molecular entities that may lead to different treatment regimens. The role of cancer stem-like cells is another area of active investigation. There is definite hope that by 2020, new cocktails of drugs will be available to target the key molecular pathways involved in gliomas and reduce their mortality and morbidity, a positive development for patients, their families, and medical professionals alike.
The tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) apoptotic pathway has emerged as a cancer therapeutic target. However, clinical trials have proven that the vast majority of human cancers are resistant to TRAIL-targeted therapies. We show here that A20-mediated ubiquitination inhibits caspase-8 cleavage and TRAIL-induced apoptosis in glioblastoma through two signaling complexes. A20 is highly expressed in glioblastomas and, together with the death receptor 5 (DR5) and receptor-interacting protein 1 (RIP1), forms a plasma membrane bound preligand assembly complex (PLAC) under physiologic conditions. TRAIL treatment leads to the recruitment of caspase-8 to the PLAC for the assembly of a death-inducing signaling complex (DISC). In the DISC, the C-terminal Zinc finger (Znf) domain of A20 ubiquitin ligase mediates RIP1 ubiquitination through lysine (K)-63-linked polyubiquitin chains that bind the protease domain of caspase-8 and inhibits its dimerization, cleavage and the initiation of TRAIL-induced apoptosis in glioblastoma-derived cell lines and tumor-initiating cells.
The presence of necrosis within a diffuse glioma is a powerful predictor of poor prognosis, yet little is known of its origins. Intravascular thrombosis is a frequent finding in glioblastoma [GBM; World Health Organization (WHO) grade IV] specimens and could potentially be involved in astrocytoma progression to GBM or represent a surrogate marker of GBM histology. We investigated whether intravascular thrombosis was more frequent or prominent in GBM than other central nervous system (CNS) malignancies and considered its prognostic significance in anaplastic astrocytoma (AA; WHO grade III), which lacks necrosis. Histologic sections were examined for thrombosis, necrosis and microvascular hyperplasia from each of 297 CNS tumors, including 103 GBMs, 46 AAs, 20 diffuse astrocytoma (DAs; WHO grade II), eight anaplastic oligodendrogliomas (AOs; WHO grade III), 20 oligodendrogliomas (ODs; WHO grade II), 49 metastatic carcinomas (METs), 31 primary central nervous system lymphomas (PCNSLs) and 20 medulloblastomas (MBs). Among newly diagnosed tumors, thrombosis was present in 92% of GBM resections, significantly greater than other types of CNS malignancies. Of tumors with thrombosis, GBMs had a higher frequency of affected vessels than AAs, DAs, AOs, ODs and MBs, but had a frequency similar to METs and PCNSLs. The sensitivity of thrombosis for the diagnosis of GBM in this set of tumors was 92% and the specificity was 91%. Intravascular thrombosis was uncommon in AAs and was only noted in stereotactic biopsies. This subset of patients had shorter survivals than those AAs without thrombosis. Thus, intravascular thrombosis is more frequent in GBM than other CNS malignancies. When present in AAs, it appears to indicate aggressive clinical behavior.
Purpose: Genetic analyses of gliomas have identified key molecular features that impact treatment paradigms beyond conventional histomorphology. Despite at-times lower grade histopathologic appearances, IDH-wildtype infiltrating gliomas expressing certain molecular markers behave like higher-grade tumors. For IDH-wildtype infiltrating gliomas lacking traditional features of glioblastoma, these markers form the basis for the novel diagnosis of diffuse astrocytic glioma, IDH-wildtype (wt), with molecular features of glioblastoma (GBM), WHO grade-IV (DAG-G). However, given the novelty of this approach to diagnosis, literature detailing the exact clinical, radiographic, and histopathologic findings associated with these tumors remain in development. Methods: Data for 25 patients matching the DAG-G diagnosis were obtained from our institution’s retrospective database. Information regarding patient demographics, treatment regimens, radiographic imaging, and genetic pathology were analyzed to determine association with clinical outcomes. Results: The initial radiographic findings, histopathology, and symptomatology of patients with DAG-G were similar to lower-grade astrocytomas (WHO grade 2/3). Overall survival (OS) and progression free survival (PFS) associated with our cohort, however, were similar to that of IDH-wt GBM, indicating a more severe clinical course than expected from other associated features (15.1 and 5.39 months respectively). Conclusion: Despite multiple features similar to lower-grade gliomas, patients with DAG-G experience clinical courses similar to GBM. Such findings reinforce the need for biopsy and subsequent analysis of molecular features associated with any astrocytoma regardless of presenting characteristics.
by
Katherine A. Hoadley;
Christina Yau;
Toshinori Hinoue;
Denise M. Wolf;
Alexander J. Lazar;
Esther Drill;
Ronglai Shen;
Alison M. Taylor;
Andrew D. Cherniack;
Vesteinn Thorsson;
Rehan Akbani;
Reanne Bowlby;
Christopher K. Wong;
Maciej Wiznerowicz;
Francisco Sanchez-Vega;
A. Gordon Robertson;
Barbara G. Schneider;
Michael S. Lawrence;
Houtan Noushmehr;
Tathiane M. Malta;
Joshua M. Stuart;
Christopher C. Benz;
Peter W. Laird;
Daniel Brat;
Amy Chen;
Keith Delman;
Fadlo Khuri;
Shishir Maithel;
Jeffrey Olson;
Taofeek Owonikoko;
Suresh Ramalingam;
Dong Shin;
Gabriel Sica;
Erwin Van Meir
We conducted comprehensive integrative molecular analyses of the complete set of tumors in The Cancer Genome Atlas (TCGA), consisting of approximately 10,000 specimens and representing 33 types of cancer. We performed molecular clustering using data on chromosome-arm-level aneuploidy, DNA hypermethylation, mRNA, and miRNA expression levels and reverse-phase protein arrays, of which all, except for aneuploidy, revealed clustering primarily organized by histology, tissue type, or anatomic origin. The influence of cell type was evident in DNA-methylation-based clustering, even after excluding sites with known preexisting tissue-type-specific methylation. Integrative clustering further emphasized the dominant role of cell-of-origin patterns. Molecular similarities among histologically or anatomically related cancer types provide a basis for focused pan-cancer analyses, such as pan-gastrointestinal, pan-gynecological, pan-kidney, and pan-squamous cancers, and those related by stemness features, which in turn may inform strategies for future therapeutic development. Comprehensive, integrated molecular analysis identifies molecular relationships across a large diverse set of human cancers, suggesting future directions for exploring clinical actionability in cancer treatment.
Greater adiposity has been linked to an increased risk and/or poorer survival in a variety of cancers. We examined whether prediagnostic body weight 1-5 years prior to diagnosis is associated with survival in patients with high grade glioma. The analysis was based on a series of patients with high-grade glioma (N = 853) enrolled in a US-based multicenter case-control study. Subjects reported height and weight 1-5 years prior to interview and at age 21. BMI was categorized according to WHO criteria as underweight (BMI <18.5 kg/m 2), normal weight (BMI 18.5-24.9 kg/m2), overweight (BMI 25-29.9 kg/m2) and obese (BMI ≥30 kg/m2). Proportional hazards regression was used to estimate hazard ratios (HR) and 95 % confidence intervals (CIs) for glioma-related death according to body mass index (BMI, kg/m2). Overall survival was reduced among patients underweight (median survival: 12.0 months) or obese (median: 13.6 months) when compared to patients of normal weight (median: 17.5 months) prior to glioma diagnosis (p = 0.004). In a multivariate model controlling for other prognostic factors, an excess mortality was observed in patients reporting obese body weights 1-5 years prior to study interview when compared to patients with a normal BMI (HR = 1.32; 95 % CI 1.04-1.68). Consistent patterns of association with excess body weight were observed in men and women, and all findings were similar regardless of treatment for glioma. A lower than optimal body weight was associated with a nonsignificant excess mortality in multivariate analysis. Premorbid obesity was significantly associated with a poor patient outcome independent of treatment and established prognostic factors. Excess body weight may be an adverse prognostic factor in glioma, a relationship observed across a spectrum of cancer types. The current findings linking prediagnostic body weight with mortality in high-grade glioma warrant further research.