Purpose: Chiari malformation type I (CMI) patients have been independently shown to have both increased resistance to cerebrospinal fluid (CSF) flow in the cervical spinal canal and greater cardiac-induced neural tissue motion compared to healthy controls. The goal of this paper is to determine if a relationship exists between CSF flow resistance and brain tissue motion in CMI subjects. Methods: Computational fluid dynamics (CFD) techniques were employed to compute integrated longitudinal impedance (ILI) as a measure of unsteady resistance to CSF flow in the cervical spinal canal in thirty-two CMI subjects and eighteen healthy controls. Neural tissue motion during the cardiac cycle was assessed using displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI) technique. Results: The results demonstrate a positive correlation between resistance to CSF flow and the maximum displacement of the cerebellum for CMI subjects (r = 0.75, p = 6.77 × 10−10) but not for healthy controls. No correlation was found between CSF flow resistance and maximum displacement in the brainstem for CMI or healthy subjects. The magnitude of resistance to CSF flow and maximum cardiac-induced brain tissue motion were not statistically different for CMI subjects with and without the presence of five CMI symptoms: imbalance, vertigo, swallowing difficulties, nausea or vomiting, and hoarseness. Conclusion: This study establishes a relationship between CSF flow resistance in the cervical spinal canal and cardiac-induced brain tissue motion in the cerebellum for CMI subjects. Further research is necessary to understand the importance of resistance and brain tissue motion in the symptomatology of CMI.
Background Progression of atherosclerosis is associated with a greater risk for adverse outcomes. Angiotensin II plays a key role in the pathogenesis and progression of atherosclerosis. We aimed to investigate the effects of angiotensin II type-1 receptor blockade with Valsartan on carotid wall atherosclerosis, with the hypothesis that Valsartan will reduce progression of atherosclerosis. Methods Subjects (n = 120) with carotid intima-media thickness >0.65 mm by ultrasound were randomized (2:1) in a double-blind manner to receive either Valsartan or placebo for 2 years. Bilateral T2-weighted black-blood carotid magnetic resonance imaging was performed at baseline, 12 and 24 months. Changes in the carotid bulb vessel wall area and wall thickness were primary endpoints. Secondary endpoints included changes in carotid plaque thickness, plasma levels of aminothiols, C-reactive protein, fibrinogen, and endothelium-dependent and -independent vascular function. Results Over 2 years, the carotid bulb vessel wall area decreased with Valsartan (-6.7, 95% CI [-11.6, -1.9] mm2) but not with placebo (3.4, 95% CI [-2.8, 9.6] mm2), P =.01 between groups. Similarly, mean wall thickness decreased with Valsartan (-0.18, 95% CI [-0.30, -0.06] mm), but not with placebo (0.08, 95% CI [-0.07, 0.23] mm), P =.009 between groups. Furthermore, plaque thickness decreased with Valsartan (-0.35, 95% CI [-0.63, -0.08] mm) but was unchanged with placebo (+0.28, 95% CI [-0.11, 0.69] mm), P =.01 between groups. These findings were unaffected by statin therapy or changes in blood pressure. Notably, there were significant improvements in the aminothiol cysteineglutathione disulfide, and trends to improvements in fibrinogen levels and endothelium-independent vascular function. Conclusions In subjects with carotid wall thickening, angiotensin II type-1 receptor blockade was associated with regression in carotid atherosclerosis. Whether these effects translate into improved outcomes in subjects with subclinical atherosclerosis warrants investigation.
Currently, there is no large animal model of sustained limb ischemia suitable for testing novel angiogenic therapeutics for peripheral artery disease (PAD) such as drugs, genes, materials, or cells. We created a large animal model suitable for efficacy assessment of these therapies by testing 3 swine hind limb ischemia (HLI) variations and quantifying vascular perfusion, muscle histology, and limb function. Ligation of the ipsilateral external and bilateral internal iliac arteries produced sustained gait dysfunction compared to isolated external iliac or unilateral external and internal iliac artery ligations. Hyperemia-dependent muscle perfusion deficits, depressed limb blood pressure, arteriogenesis, muscle atrophy, and microscopic myopathy were quantifiable in ischemic limbs 6 weeks post-ligation. Porcine mesenchymal stromal cells (MSCs) engineered to express a reporter gene were visualized post-administration via positron emission tomography (PET) in vivo. These results establish a preclinical platform enabling better optimization of PAD therapies, including cellular therapeutics, increasing bench-to-bedside translational success. Graphical abstract: [Figure not available: see fulltext.].
INTRODUCTION: Deep learning (DL)-based segmentation has gained popularity for routine cardiac magnetic resonance (CMR) image analysis and in particular, delineation of left ventricular (LV) borders for LV volume determination. Free-breathing, self-navigated, whole-heart CMR exams provide high-resolution, isotropic coverage of the heart for assessment of cardiac anatomy including LV volume. The combination of whole-heart free-breathing CMR and DL-based LV segmentation has the potential to streamline the acquisition and analysis of clinical CMR exams. The purpose of this study was to compare the performance of a DL-based automatic LV segmentation network trained primarily on computed tomography (CT) images in two whole-heart CMR reconstruction methods: (1) an in-line respiratory motion-corrected (Mcorr) reconstruction and (2) an off-line, compressed sensing-based, multi-volume respiratory motion-resolved (Mres) reconstruction. Given that Mres images were shown to have greater image quality in previous studies than Mcorr images, we hypothesized that the LV volumes segmented from Mres images are closer to the manual expert-traced left ventricular endocardial border than the Mcorr images. METHOD: This retrospective study used 15 patients who underwent clinically indicated 1.5 T CMR exams with a prototype ECG-gated 3D radial phyllotaxis balanced steady state free precession (bSSFP) sequence. For each reconstruction method, the absolute volume difference (AVD) of the automatically and manually segmented LV volumes was used as the primary quantity to investigate whether 3D DL-based LV segmentation generalized better on Mcorr or Mres 3D whole-heart images. Additionally, we assessed the 3D Dice similarity coefficient between the manual and automatic LV masks of each reconstructed 3D whole-heart image and the sharpness of the LV myocardium-blood pool interface. A two-tail paired Student's t-test (alpha = 0.05) was used to test the significance in this study. RESULTS & DISCUSSION: The AVD in the respiratory Mres reconstruction was lower than the AVD in the respiratory Mcorr reconstruction: 7.73 ± 6.54 ml vs. 20.0 ± 22.4 ml, respectively (n = 15, p-value = 0.03). The 3D Dice coefficient between the DL-segmented masks and the manually segmented masks was higher for Mres images than for Mcorr images: 0.90 ± 0.02 vs. 0.87 ± 0.03 respectively, with a p-value = 0.02. Sharpness on Mres images was higher than on Mcorr images: 0.15 ± 0.05 vs. 0.12 ± 0.04, respectively, with a p-value of 0.014 (n = 15). CONCLUSION: We conclude that the DL-based 3D automatic LV segmentation network trained on CT images and fine-tuned on MR images generalized better on Mres images than on Mcorr images for quantifying LV volumes.
BACKGROUND: Extremes of wall shear stress (WSS) have been associated with plaque progression and transformation, which has raised interest in the clinical assessment of WSS. We hypothesized that calculated coronary WSS is predicted only partially by luminal geometry and that WSS is related to plaque composition. METHODS AND RESULTS: Twenty-seven patients with coronary artery disease underwent virtual histology intravascular ultrasound and Doppler velocity measurement for computational fluid dynamics modeling for WSS calculation in each virtual histology intravascular ultrasound segment (N=3581 segments). We assessed the association of WSS with plaque burden and distribution and with plaque composition. WSS remained relatively constant across the lower 3 quartiles of plaque burden (P=0.08) but increased in the highest quartile of plaque burden (P<0.001). Segments distal to lesions or within bifurcations were more likely to have low WSS (P<0.001). However, the majority of segments distal to lesions (80%) and within bifurcations (89%) did not exhibit low WSS. After adjustment for plaque burden, there was a negative association between WSS and percent necrotic core and calcium. For every 10 dynes/cm(2) increase in WSS, percent necrotic core decreased by 17% (P=0.01), and percent dense calcium decreased by 17% (P<0.001). There was no significant association between WSS and percent of fibrous or fibrofatty plaque components (P=NS). CONCLUSIONS: IN PATIENTS WITH CORONARY ARTERY DISEASE: (1) Luminal geometry predicts calculated WSS only partially, which suggests that detailed computational techniques must be used to calculate WSS. (2) Low WSS is associated with plaque necrotic core and calcium, independent of plaque burden, which suggests a link between WSS and coronary plaque phenotype. (J Am Heart Assoc. 2012;1:e002543 doi: 10.1161/JAHA.112.002543.).
Background: A novel application of cine Displacement ENcoding with Stimulated Echoes Magnetic Resonance Imaging (DENSE MRI) has recently been described to assess regional heterogeneities in circumferential strain around the aortic wall in vivo; however, validation is first required for successful clinical translation. Purpose: To validate the quantification of regional circumferential strain around the wall of an aortic phantom using DENSE MRI. Study Type: In vitro phantom study. Population: Three polyvinyl alcohol aortic phantoms with eight axially oriented nitinol wires embedded evenly around the walls. Field Strength/Sequence: 3 T; gradient-echo aortic DENSE MRI with spiral cine readout, gradient-echo phase-contrast MRI (PCMR) with Cartesian cine readout. Assessment: Phantoms were connected to a pulsatile flow loop and peak DENSE-derived regional circumferential Green strains at 16 equally spaced sectors around the wall were assessed according to previously published algorithms. “True” regional circumferential strains were calculated by manually tracking displacements of the nitinol wires by two independent observers. Normalized circumferential strains (NCS) were calculated by dividing regional strains by the mean strain. Finally, DENSE-derived regional strain was corrected by multiplying regional DENSE NCS by the mean strain calculated from the diameter change on the PCMR. Statistical Tests: One-sample t-test, Paired-sample t-test, and analysis of variance with Bonferroni correction, coefficient of variation (CoV), Bland–Altman analysis; P < 0.05 was considered statistically significant. Results: Aortic DENSE MRI significantly overestimated circumferential strain compared to the wire-tracking method (mean difference and SD 0.030 ± 0.014, CoV 0.31). However, NCS demonstrated good agreement between DENSE and wire-tracking data (mean difference 0.000 ± 0.172, CoV 0.15). After correcting the DENSE-derived regional strain, the mean difference in regional circumferential strain between DENSE and wire-tracking was significantly reduced to 0.006 ± 0.008, and the CoV was reduced to 0.18. Data Conclusion: For aortic phantoms with mild spatial heterogeneity in circumferential strain, the previously published aortic DENSE MRI technique successfully assessed the regional NCS distribution but overestimated the mean strain. This overestimation is correctable by computing a more accurate mean circumferential strain using a separate cine scan. Level of Evidence: 2. Technical Efficacy: Stage 2.
by
Alexander D Cetnar;
Martin L Tomov;
Liqun Ning;
Bowen Jing;
Andrea S Theus;
Akassh Kumar;
Amanda N Wijntjes;
Sai Raviteja Bhamidipati;
Katherine P Do;
Athanasios Mantalaris;
John Oshinski;
Reza Avazmohammadi;
Brooks D Lindsey;
Holly Bauser-Heaton;
Vahid Serpooshan
The heart is the first organ to develop in the human embryo through a series of complex chronological processes, many of which critically rely on the interplay between cells and the dynamic microenvironment. Tight spatiotemporal regulation of these interactions is key in heart development and diseases. Due to suboptimal experimental models, however, little is known about the role of microenvironmental cues in the heart development. This study investigates the use of 3D bioprinting and perfusion bioreactor technologies to create bioartificial constructs that can serve as high-fidelity models of the developing human heart. Bioprinted hydrogel-based, anatomically accurate models of the human embryonic heart tube (e-HT, day 22) and fetal left ventricle (f-LV, week 33) are perfused and analyzed both computationally and experimentally using ultrasound and magnetic resonance imaging. Results demonstrate comparable flow hemodynamic patterns within the 3D space. We demonstrate endothelial cell growth and function within the bioprinted e-HT and f-LV constructs, which varied significantly in varying cardiac geometries and flow. This study introduces the first generation of anatomically accurate, 3D functional models of developing human heart. This platform enables precise tuning of microenvironmental factors, such as flow and geometry, thus allowing the study of normal developmental processes and underlying diseases.
Objective
Current understanding of shear sensitive signaling pathways has primarily been studied in vitro largely due to a lack of adequate in vivo models. Our objective was to develop a simple and well characterized murine aortic coarctation model to acutely alter the hemodynamic environment in vivo and test the hypothesis that endothelial inflammatory protein expression is acutely upregulated in vivo in by low magnitude oscillatory WSS.
Methods and Results
Our model utilizes the shape memory response of nitinol clips to reproducibly induce an aortic coarctation and allow subsequent focal control over WSS in the aorta. We modeled the corresponding hemodynamic environment using computational fluid dynamics and showed that the coarctation produces low magnitude oscillatory WSS distal to the clip. To assess the biological significance of this model, we correlated WSS to inflammatory protein expression and fatty streak formation. VCAM-1 expression and fatty streak formation were both found to increase significantly in regions corresponding to acutely induced low magnitude oscillatory WSS.
Conclusions
We have developed a novel aortic coarctation model that will be a useful tool for analyzing the in vivo molecular mechanisms of mechanotransduction in various murine models.
A validation study and early results for noninvasive, in vivo measurement of coronary artery blood flow using phase contrast magnetic resonance imaging (PC-MRI) at 3.0 Tesla is presented. Accuracy of coronary artery blood flow measurements by phase contrast MRI is limited by heart and respiratory motion as well as the small size of the coronary arteries. In this study, a navigator-echo gated, cine phase velocity mapping technique is described to obtain time-resolved velocity and flow waveforms of small diameter vessels at 3.0 Tesla. Phantom experiments using steady, laminar flow are presented to validate the technique and show flow rates measured by 3.0 Tesla phase contrast MRI to be accurate within 15% of true flow rates. Subsequently, in vivo scans on healthy volunteers yield velocity measurements for blood flow in the right, left anterior descending, and left circumflex arteries. Measurements of average, cross-sectional velocity were obtainable in 224/243 (92%) of the cardiac phases. Time-averaged, cross-sectional velocity of the blood flow was 6.8±4.3 cm/s in the LAD, 8.0±3.8 cm/s in the LCX, and 6.0±1.6 cm/s in the RCA.
Purpose
To quantify periods of low motion and cross-sectional area changes of the coronary veins during the cardiac cycle for planning magnetic resonance coronary venograms (MRCV).
Materials and Methods
Images were acquired from nineteen patients with coronary artery disease (CAD) and thirteen patients scheduled for cardiac resynchronization therapy (CRT). The displacement and cross-sectional area of the coronary sinus was tracked and periods of low motion were defined as consecutive time points during which the position of the coronary sinus remained within a 0.67 mm diameter region. Patients were classified as systolic dominant or diastolic dominant based on the relative duration of their low motion periods.
Results
All CRT patients were classified as systolic dominant, and 32% of these had no separate diastolic rest period. All CAD patients with ejection fraction <35% were classified as systolic dominant, while all CAD patients with ejection fraction >35%were diastolic dominant. In 77% of all subjects, the cross-sectional area of the coronary sinus was larger in systole than in diastole.
Conclusion
The movement of the coronary sinus can be used to classify patients as either having a longer systolic or diastolic rest period. The classification of the CRT patients as systolic dominant suggests that MRCVs be acquired in systole for CRT planning; however, each patient’s low motion periods should be categorized to ensure the correct period is being utilized to minimize motion artifacts.