A gravida 4 para 1021, 41-year-old woman postcaesarean section at 39 weeks and 1 day with clinically significant haemorrhage required embolisation of unique uterine arterial collaterals. She had persistent haemorrhage after initial bilateral uterine artery embolisation, and on further investigation she was found to have a hypertrophied right round ligament artery. Once successful embolisation of this abnormal right round ligament artery was completed using a combination of Gelfoam and coils, haemostasis was achieved. She had rapid clinical improvement, no complications and no further admissions on postprocedural follow-up over a year and a half later.
We propose a relational graph to incorporate clinical similarity between patients while building personalized clinical event predictors with a focus on hospitalized COVID-19 patients. Our graph formation process fuses heterogeneous data, i.e., chest X-rays as node features and non-imaging EHR for edge formation. While node represents a snap-shot in time for a single patient, weighted edge structure encodes complex clinical patterns among patients. While age and gender have been used in the past for patient graph formation, our method incorporates complex clinical history while avoiding manual feature selection. The model learns from the patient's own data as well as patterns among clinically-similar patients. Our visualization study investigates the effects of 'neighborhood' of a node on its predictiveness and showcases the model's tendency to focus on edge-connected patients with highly suggestive clinical features common with the node. The proposed model generalizes well by allowing edge formation process to adapt to an external cohort.
Radiology reports are a rich resource for advancing deep learning applications for medical images, facilitating the generation of large-scale annotated image databases. Although the ambiguity and subtlety of natural language poses a significant challenge to information extraction from radiology reports. Thyroid Imaging Reporting and Data Systems (TI-RADS) has been proposed as a system to standardize ultrasound imaging reports for thyroid cancer screening and diagnosis, through the implementation of structured templates and a standardized thyroid nodule malignancy risk scoring system; however there remains significant variation in radiologist practice when it comes to diagnostic thyroid ultrasound interpretation and reporting. In this work, we propose a computerized approach using a contextual embedding and fusion strategy for the large-scale inference of TI-RADS final assessment categories from narrative ultrasound (US) reports. The proposed model has achieved high accuracy on an internal data set, and high performance scores on an external validation dataset.
The strain on healthcare resources brought forth by the recent COVID-19 pandemic has highlighted the need for efficient resource planning and allocation through the prediction of future consumption. Machine learning can predict resource utilization such as the need for hospitalization based on past medical data stored in electronic medical records (EMR). We conducted this study on 3194 patients (46% male with mean age 56.7 (±16.8), 56% African American, 7% Hispanic) flagged as COVID-19 positive cases in 12 centers under Emory Healthcare network from February 2020 to September 2020, to assess whether a COVID-19 positive patient’s need for hospitalization can be predicted at the time of RT-PCR test using the EMR data prior to the test. Five main modalities of EMR, i.e., demographics, medication, past medical procedures, comorbidities, and laboratory results, were used as features for predictive modeling, both individually and fused together using late, middle, and early fusion. Models were evaluated in terms of precision, recall, F1-score (within 95% confidence interval). The early fusion model is the most effective predictor with 84% overall F1-score [CI 82.1–86.1]. The predictive performance of the model drops by 6 % when using recent clinical data while omitting the long-term medical history. Feature importance analysis indicates that history of cardiovascular disease, emergency room visits in the past year prior to testing, and demographic factors are predictive of the disease trajectory. We conclude that fusion modeling using medical history and current treatment data can forecast the need for hospitalization for patients infected with COVID-19 at the time of the RT-PCR test.