Background: The 1.6 Mb 3q29 deletion is associated with neurodevelopmental and neuropsychiatric phenotypes, including a 19-fold increased risk for autism spectrum disorder (ASD). Previous work by our team identified elevated social disability in this population via parent-report questionnaires. However, clinical features of ASD in this population have not been explored in detail. Methods: Thirty-one individuals with 3q29 deletion syndrome (3q29del, 61.3% male) were evaluated using two gold-standard clinical ASD evaluations: the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2), and the Autism Diagnostic Interview, Revised (ADI-R). Four matched comparators for each subject were ascertained from the National Database for Autism Research. Item-level scores on the ADOS-2 and ADI-R were compared between subjects with 3q29del and matched comparators. Results: Subjects with 3q29del and no ASD (3q29del-ASD) had greater evidence of social disability compared to typically developing (TD) comparison subjects across the ADOS-2. Subjects with 3q29del and ASD (3q29del + ASD) were largely indistinguishable from non-syndromic ASD (nsASD) subjects on the ADOS-2. 3q29del + ASD performed significantly better on social communication on the ADI-R than nsASD (3q29 + ASD mean = 11.36; nsASD mean = 15.70; p = 0.01), and this was driven by reduced deficits in nonverbal communication (3q29 + ASD mean = 1.73; nsASD mean = 3.63; p = 0.03). 3q29del + ASD reported significantly later age at the first two-word phrase compared to nsASD (3q29del + ASD mean = 43.89 months; nsASD mean = 37.86 months; p = 0.01). However, speech delay was not related to improved nonverbal communication in 3q29del + ASD. Limitations: There were not enough TD comparators with ADI-R data in NDAR to include in the present analysis. Additionally, our relatively small sample size made it difficult to assess race and ethnicity effects. Conclusions: 3q29del is associated with significant social disability, irrespective of ASD diagnosis. 3q29del + ASD have similar levels of social disability to nsASD, while 3q29del-ASD have significantly increased social disability compared to TD individuals. However, social communication is reasonably well preserved in 3q29del + ASD relative to nsASD. It is critical that verbal ability and social disability be examined separately in this population to ensure equal access to ASD and social skills evaluations and services.
The 1.6-megabase deletion at chromosome 3q29 (3q29Del) is the strongest identified genetic risk factor for schizophrenia, but the effects of this variant on neurodevelopment are not well understood. We interrogated the developing neural transcriptome in two experimental model systems with complementary advantages: isogenic human cortical organoids and isocortex from the 3q29Del mouse model.We profiled transcriptomes from isogenic cortical organoids that were aged for 2 and 12 months, as well as perinatal mouse isocortex, all at single-cell resolution. Systematic pathway analysis implicated dysregulation of mitochondrial function and energy metabolism. These molecular signatures were supported by analysis of oxidative phosphorylation protein complex expression in mouse brain and assays of mitochondrial function in engineered cell lines, which revealed a lack of metabolic flexibility and a contribution of the 3q29 gene PAK2. Together, these data indicate that metabolic disruption is associated with 3q29Del and is conserved across species.
by
Jennifer Cable;
Ryan Purcell;
Elise Robinson;
Jacob AS Vorstman;
Wendy K Chung;
John Constantino;
Stephan J Sanders;
Mustafa Sahin;
Ricardo E Dolmetsch;
Bina M Shah;
Audrey Thurm;
Christa L Martin;
Carrie E Bearden;
Jennifer Mulle
Neurodevelopmental neuropsychiatric disorders, such as autism spectrum disorder and schizophrenia, have strong genetic risk components, but the underlying mechanisms have proven difficult to decipher. Rare, high-risk variants may offer an opportunity to delineate the biological mechanisms responsible more clearly for more common idiopathic diseases. Indeed, different rare variants can cause the same behavioral phenotype, demonstrating genetic heterogeneity, while the same rare variant can cause different behavioral phenotypes, demonstrating variable expressivity. These observations suggest convergent underlying biological and neurological mechanisms; identification of these mechanisms may ultimately reveal new therapeutic targets. At the 2021 Keystone eSymposium “Neuropsychiatric and Neurodevelopmental Disorders: Harnessing Rare Variants” a panel of experts in the field described significant progress in genomic discovery and human phenotyping and raised several consistent issues, including the need for detailed natural history studies of rare disorders, the challenges in cohort recruitment, and the importance of viewing phenotypes as quantitative traits that are impacted by rare variants.
Schizophrenia (SCZ) is an etiologically heterogeneous disease with genetic and environmental risk factors (e.g., Toxoplasma gondii infection) differing among affected individuals. Distinguishing such risk factors may point to differences in pathophysiological pathways and facilitate the discovery of individualized treatments. Toxoplasma gondii (TOXO) has been implicated in increasing the risk of schizophrenia. To determine whether TOXO-positive individuals with SCZ have a different polygenic risk burden than uninfected people, we applied the SCZ polygenic risk score (SCZ-PRS) derived from the Psychiatric GWAS Consortium separately to the TOXO-positive and TOXO-negative subjects with the diagnosis of SCZ as the outcome variable. The SCZ-PRS does not include variants in the major histocompatibility complex. Of 790 subjects assessed for TOXO, the 662 TOXO-negative subjects (50.8% with SCZ) reached a Bonferroni corrected significant association (p = 0.00017, R2 = 0.023). In contrast, the 128 TOXO-positive individuals (53.1% with SCZ) showed no significant association (p = 0.354) for SCZ-PRS and had a much lower R2 (R2 = 0.007). To account for Type-2 error in the TOXO-positive dataset, we performed a random sampling of the TOXO-negative subpopulation (n = 130, repeated 100 times) to simulate equivalent power between groups: the p-value was <0.05 for SCZ-PRS 55% of the time but was rarely (6% of the time) comparable to the high p-value of the seropositive group at p > 0.354. We found intriguing evidence that the SCZ-PRS predicts SCZ in TOXO-negative subjects, as expected, but not in the TOXO-positive individuals. This result highlights the importance of considering environmental risk factors to distinguish a subgroup with independent or different genetic components involved in the development of SCZ.
Background: High sequence identity between segmental duplications (SDs) can facilitate copy number variants (CNVs) via non-allelic homologous recombination (NAHR). These CNVs are one of the fundamental causes of genomic disorders such as the 3q29 deletion syndrome (del3q29S). There are 21 protein-coding genes lost or gained as a result of such recurrent 1.6-Mbp deletions or duplications, respectively, in the 3q29 locus. While NAHR plays a role in CNV occurrence, the factors that increase the risk of NAHR at this particular locus are not well understood. Methods: We employed an optical genome mapping technique to characterize the 3q29 locus in 161 unaffected individuals, 16 probands with del3q29S and their parents, and 2 probands with the 3q29 duplication syndrome (dup3q29S). Long-read sequencing-based haplotype resolved de novo assemblies from 44 unaffected individuals, and 1 trio was used for orthogonal validation of haplotypes and deletion breakpoints. Results: In total, we discovered 34 haplotypes, of which 19 were novel haplotypes. Among these 19 novel haplotypes, 18 were detected in unaffected individuals, while 1 novel haplotype was detected on the parent-of-origin chromosome of a proband with the del3q29S. Phased assemblies from 44 unaffected individuals enabled the orthogonal validation of 20 haplotypes. In 89% (16/18) of the probands, breakpoints were confined to paralogous copies of a 20-kbp segment within the 3q29 SDs. In one del3q29S proband, the breakpoint was confined to a 374-bp region using long-read sequencing. Furthermore, we categorized del3q29S cases into three classes and dup3q29S cases into two classes based on breakpoints. Finally, we found no evidence of inversions in parent-of-origin chromosomes. Conclusions: We have generated the most comprehensive haplotype map for the 3q29 locus using unaffected individuals, probands with del3q29S or dup3q29S, and available parents, and also determined the deletion breakpoint to be within a 374-bp region in one proband with del3q29S. These results should provide a better understanding of the underlying genetic architecture that contributes to the etiology of del3q29S and dup3q29S.
The human gut harbors a complex community of microbes that profoundly influence many aspects of growth and development, including development of the nervous system. Advances in high-throughput DNA sequencing methods have led to rapidly expanding knowledge about this gut microbiome. Here, we review fundamental emerging data on the human gut microbiome, with a focus on potential interactions between the microbiome and autism spectrum disorders (ASD) and consider research on atypical patterns of feeding and nutrition in ASD and how they might interact with the microbiome. Finally we selectively survey results from studies in rodents on the impact of the microbiome on neurobehavioral development. The evidence reviewed here suggests that a deeper understanding of the gut microbiome could open up new avenues of research on ASD, including potential novel treatment strategies.
BACKGROUND: 3q29 deletion syndrome (3q29del) is associated with a significantly increased risk for neurodevelopmental and neuropsychiatric phenotypes. Mild to moderate intellectual disability (ID) is common in this population, and previous work by our team identified substantial deficits in adaptive behavior. However, the full profile of adaptive function in 3q29del has not been described, nor has it been compared to other genomic syndromes associated with elevated risk for neurodevelopmental and neuropsychiatric phenotypes. METHODS: Individuals with 3q29del (n=32, 62.5% male) were evaluated using the Vineland Adaptive Behavior Scales, Third Edition, Comprehensive Parent/Caregiver Form (Vineland-3). We explored the relationship between adaptive behavior and cognitive function, executive function, and neurodevelopmental and neuropsychiatric comorbidities in our 3q29del study sample, and we compared subjects with 3q29del to published data on Fragile X syndrome, 22q11.2 deletion syndrome, and 16p11.2 deletion and duplication syndromes. RESULTS: Individuals with 3q29del had global deficits in adaptive behavior that were not driven by specific weaknesses in any given domain. Individual neurodevelopmental and neuropsychiatric diagnoses had a small effect on adaptive behavior, and the cumulative number of comorbid diagnoses was significantly negatively associated with Vineland-3 performance. Both cognitive ability and executive function were significantly associated with adaptive behavior, and executive function was a better predictor of Vineland-3 performance than cognitive ability. Finally, the severity of adaptive behavior deficits in 3q29del was distinct from previously published data on comparable genomic disorders. CONCLUSIONS: Individuals with 3q29del have significant deficits in adaptive behavior, affecting all domains assessed by the Vineland-3. Executive function is a better predictor of adaptive behavior than cognitive ability in this population and suggests that interventions targeting executive function may be an effective therapeutic strategy.
3q29 deletion syndrome (3q29del) is a rare genomic disorder caused by a 1.6 Mb deletion (hg19, chr3:195725000â€"197350000). 3q29del is associated with neurodevelopmental and psychiatric phenotypes, including an astonishing >40-fold increased risk for schizophrenia, but medical phenotypes are less well-described. We used the online 3q29 registry ( 3q29deletion.org ) to recruit 57 individuals with 3q29del (56.14% male) and requested information about musculoskeletal phenotypes with a custom questionnaire. 85.96% of participants with 3q29del reported at least one musculoskeletal phenotype. Congenital anomalies were most common (70.18%), with pes planus (40.35%), pectus excavatum (22.81%), and pectus carinatum (5.26%) significantly elevated relative to the pediatric general population. 49.12% of participants reported fatigue after 30 minutes or less of activity. Bone fractures (8.77%) were significantly elevated relative to the pediatric general population, suggesting 3q29del impacts bone strength. Participants commonly report receiving medical care for musculoskeletal complaints (71.93%), indicating that these phenotypes impact quality of life for individuals with 3q29del. This is the most comprehensive description of musculoskeletal phenotypes in 3q29del to date, suggests ideas for clinical evaluation, and expands our understanding of the phenotypic spectrum of this syndrome.
Objective:Genetic diagnoses are increasingly common in cases of intellectual disability and developmental delay. Although ascertainment of a relatively common, well-studied variant may provide guidance related to treatments and developmental expectations, it is less clear how the diagnosis of a rare variant affects caregivers, especially when the phenotype may include later-onset manifestations such as psychosis. In this study, we sought to identify caregiver concerns in the first qualitative study to assess the psychosocial impact of diagnosis on caregivers of individuals with 3q29 deletion syndrome (3q29Del), which is associated with a 40-fold increase in risk for psychosis.Methods:Participants were recruited from the national 3q29Del registry housed at Emory University (3q29deletion.org). Fifteen participants completed a semistructured phone interview during which they were asked about their experiences before, during, and after their child received a diagnosis of 3q29Del. Interview responses were analyzed using the general inductive approach, and overarching themes were identified.Results:We identified the following overarching themes: difficult "diagnostic odyssey," mixed feelings about diagnosis, frustration with degree of uncertainty, and importance of resources. Importantly, our data suggest that future risk for psychosis is often not disclosed by medical professionals, consistent with the experience of individuals with 22q11.2 deletion syndrome.Conclusions:These results highlight potential gaps in how caregivers are informed of risk for adult-onset conditions and indicate key caregiver concerns for consideration in the diagnosis of 3q29Del.
by
Jennifer Mulle;
Ann E. Pulver;
John M. McGrath;
Paula Wolyniec;
Anne F. Dodd;
David Cutler;
Jonathan Sebat;
Dheeraj Malhotra;
Gerald Nestadt;
Donald F. Conrad;
Matthew Hurles;
Chris P. Barnes;
Masashi Ikeda;
Nakao Iwata;
Douglas F. Levinson;
Pablo V. Gejman;
Alan R. Sanders;
Jubao Duan;
Adele A. Mitchell;
Inga Peter;
Pamela Sklar;
Colm T. O'Dushlaine;
Detelina Grozeva;
Michael C. O'Donovan;
Michael J. Owen;
Christina M. Hultman;
Anna K. Kahler;
Patrick F. Sullivan;
George Kirov;
Stephen Warren
Background Several copy number variants (CNVs) have been implicated as susceptibility factors for schizophrenia (SZ). Some of these same CNVs also increase risk for autism spectrum disorders, suggesting an etiologic overlap between these conditions. Recently, de novo duplications of a region on chromosome 7q11.23 were associated with autism spectrum disorders. The reciprocal deletion of this region causes Williams-Beuren syndrome. Methods We assayed an Ashkenazi Jewish cohort of 554 SZ cases and 1014 controls for genome-wide CNV. An excess of large rare and de novo CNVs were observed, including a 1.4 Mb duplication on chromosome 7q11.23 identified in two unrelated patients. To test whether this 7q11.23 duplication is also associated with SZ, we obtained data for 14,387 SZ cases and 28,139 controls from seven additional studies with high-resolution genome-wide CNV detection. We performed a meta-analysis, correcting for study population of origin, to assess whether the duplication is associated with SZ. Results We found duplications at 7q11.23 in 11 of 14,387 SZ cases with only 1 in 28,139 control subjects (unadjusted odds ratio 21.52, 95% confidence interval: 3.13-922.6, p value 5.5 × 10 -5; adjusted odds ratio 10.8, 95% confidence interval: 1.46-79.62, p value.007). Of three SZ duplication carriers with detailed retrospective data, all showed social anxiety and language delay premorbid to SZ onset, consistent with both human studies and animal models of the 7q11.23 duplication. Conclusions We have identified a new CNV associated with SZ. Reciprocal duplication of the Williams-Beuren syndrome deletion at chromosome 7q11.23 confers an approximately tenfold increase in risk for SZ.