The major histocompatibility complex class II (MHC-II) locus includes a dense cluster of genes that function to initiate immune responses. Expression of insulator CCCTC binding factor (CTCF) was found to be required for expression of all MHC class II genes associated with antigen presentation. Ten CTCF sites that divide the MHC-II locus into apparent evolutionary domains were identified. To define the role of CTCF in mediating regulation of the MHC II genes, chromatin conformation capture assays, which provide an architectural assessment of a locus, were conducted across the MHC-II region. Depending on whether MHC-II genes and the class II transactivator (CIITA) were being expressed, two CTCF-dependent chromatin architectural states, each with multiple configurations and interactions, were observed. These states included the ability to express MHC-II gene promoter regions to interact with nearby CTCF sites and CTCF sites to interact with each other. Thus, CTCF organizes the MHC-II locus into a novel basal architecture of interacting foci and loop structures that rearranges in the presence of CIITA. Disruption of the rearranged states eradicated expression, suggesting that the formation of these structures is key to coregulation of MHC-II genes and the locus.
Germline mutations in ETV6 are associated with a syndrome of thrombocytopenia and leukemia predisposition, and ETV6 is among the most commonly mutated genes in leukemias, especially childhood B-cell acute lymphoblastic leukemia. However, the mechanisms underlying disease caused by ETV6 dysfunction are poorly understood. To address these gaps in knowledge, using CRISPR/Cas9, we developed a mouse model of the most common recurrent, disease-causing germline mutation in ETV6. We found defects in hematopoiesis related primarily to abnormalities of the multipotent progenitor population 4 (MPP4) subset of hematopoietic progenitor cells and evidence of sterile inflammation. Expression of ETV6 in Ba/F3 cells altered the expression of several cytokines, some of which were also detected at higher levels in the bone marrow of the mice with Etv6 mutation. Among these, interleukin-18 and interleukin-13 abrogated B-cell development of sorted MPP4 cells, but not common lymphoid progenitors, suggesting that inflammation contributes to abnormal hematopoiesis by impairing lymphoid development. These data, along with those from humans, support a model in which ETV6 dysfunction promotes inflammation, which adversely affects thrombopoiesis and promotes leukemogenesis.
The transcription factor Interferon regulatory factor 8 (IRF8) is involved in maintaining B cell identity. However, how IRF8 regulates T cell independent B cell responses are not fully characterized. Here, an in vivo CRISPR/Cas9 system was optimized to generate Irf8-deficient murine B cells and used to determine the role of IRF8 in B cells responding to LPS stimulation. Irf8-deficient B cells more readily formed CD138+ plasmablasts in response to LPS with the principal dysregulation occurring at the activated B cell stage. Transcriptional profiling revealed an upregulation of plasma cell associated genes prematurely in activated B cells and a failure to repress the gene expression programs of IRF1 and IRF7 in Irf8-deficient cells. These data expand on the known roles of IRF8 in regulating B cell identity by preventing premature plasma cell formation and highlight how IRF8 helps evolve TLR responses away from the initial activation towards those driving humoral immunity.
The world’s population with obesity is reaching pandemic levels. If current trends continue, it is predicted that there will be 1.5 billion people with obesity by 2030. This projection is alarming due to the association of obesity with numerous diseases including cancer, with recent studies demonstrating a positive association with acute myeloid leukemia (AML) and B cell acute lymphoblastic leukemia (B-ALL). Interestingly, several epidemiological studies suggest the converse relationship may exist in patients with T cell acute lymphoblastic leukemia (T-ALL). To determine the relationship between obesity and T-ALL development, we employed the diet-induced obesity (DIO) murine model and cultured human T-ALL cells in adipocyte-conditioned media (ACM), bone marrow stromal cell-conditioned media, stromal conditioned media (SCM), and unconditioned media to determine the functional impact of increased adiposity on leukemia progression. Whereas only 20% of lean mice transplanted with T-ALL cells survived longer than 3 months post-inoculation, 50%–80% of obese mice with leukemia survived over this same period. Furthermore, culturing human T-ALL cells in ACM resulted in increased histone H3 acetylation (K9/K14/K18/K23/K27) and methylation (K4me3 and K27me3) posttranslational modifications (PTMs), which preceded accelerated cell cycle progression, DNA damage, and cell death. Adipocyte-mediated epigenetic changes in human T-ALL cells were recapitulated with the H3K27 demethylase inhibitor GSK-J4 and the pan-HDAC inhibitor vorinostat. These drugs were also highly cytotoxic to human T-ALL cells at low micromolar concentrations. In summary, our data support epidemiological studies demonstrating that adiposity suppresses T-ALL pathogenesis. We present data demonstrating that T-ALL cell death in adipose-rich microenvironments is induced by epigenetic modifications, which are not tolerated by leukemia cells. Similarly, GSK-J4 and vorinostat treatment induced epigenomic instability and cytotoxicity profiles that phenocopied the responses of human T-ALL cells to ACM, which provides additional support for the use of epigenetic modifying drugs as a treatment option for T-ALL.
Humoral immunity provides protection from pathogenic infection and is mediated by antibodies following the differentiation of naive B cells (nBs) to antibody-secreting cells (ASCs). This process requires substantial epigenetic and transcriptional rewiring to ultimately repress the nB program and replace it with one conducive to ASC physiology and function. Notably, these reprogramming events occur within the framework of cell division. Efforts to understand the relationship of cell division with reprogramming and ASC differentiation in vivo have uncovered the timing and scope of reprogramming, as well as key factors that influence these events. Herein, we discuss the unique physiology of ASC and how nBs undergo epigenetic and genome architectural reorganization to acquire the necessary functions to support antibody production. We also discuss the stage-wise manner in which reprogramming occurs across cell divisions and how key molecular determinants can influence B cell fate outcomes.
B cell differentiation into Ab-secreting plasma cells requires transcriptional, metabolic, and epigenetic remodeling. Histone H3 lysine 27 trimethylation (H3K27me3), a histone modification associated with gene silencing, is dynamically regulated during B cell differentiation. Although several studies have focused on mechanisms involving the gain of this modification in plasmablasts (PB), the role of active demethylation of H3K27me3 by ubiquitously transcribed tetratricopeptide repeat, X chromosome (UTX) and Jumonji domain-containing protein 3 (JMDJ3) during B cell differentiation has not been examined. In this study, this process was assessed using a pharmacological inhibitor of UTX and JMJD3, GSK-J4. Treatment of ex vivo stimulated mouse B cells with GSK-J4 led to an increase in PB frequency without affecting the ability of the newly formed PB to secrete Abs. Consistent with the role of UTX and JMJD3 in promoting gene expression, the majority of differentially expressed were downregulated upon GSK-J4 treatment. GSKJ4–treated cells downregulated genes associated with signaling and P53 pathways. Inhibitor treated cells upregulated genes associated with cell cycle and proliferation, which correlated with an increase in actively proliferating cells. Unexpectedly, a majority of the downregulated transcripts corresponded to genes that in the wild-type setting were genes that gain H3K27me3 and downregulated in PB. Together, our results show that UTX and JMDJ3 are required to restrain B cell differentiation and suggest that they function as a rheostat for H3K27me3 to control this process.
CD8 cytotoxic T cells are a potent line of defense against invading pathogens. To aid in curtailing aberrant immune responses, the activation status of CD8 T cells is highly regulated. One mechanism in which CD8 T cell responses are dampened is via signaling through the immune-inhibitory receptor Programmed Cell Death Protein-1, encoded by Pdcd1. Pdcd1 expression is regulated through engagement of the TCR, as well as by signaling from extracellular cytokines. Understanding such pathways has influenced the development of numerous clinical treatments. In this study, we showed that signals from the cytokine IL-6 enhanced Pdcd1 expression when paired with TCR stimulation in murine CD8 T cells. Mechanistically, signals from IL-6 were propagated through activation of the transcription factor STAT3, resulting in IL-6-dependent binding of STAT3 to Pdcd1 cis-regulatory elements. Intriguingly, IL-6 stimulation overcame B Lymphocyte Maturation Protein 1-mediated epigenetic repression of Pdcd1, which resulted in a transcriptionally permissive landscape marked by heightened histone acetylation. Furthermore, in vivo-activated CD8 T cells derived from lymphocytic choriomeningitis virus infection required STAT3 for optimal Programmed Cell Death Protein-1 surface expression. Importantly, STAT3 was the only member of the STAT family present at Pdcd1 regulatory elements in lymphocytic choriomeningitis virus Ag-specific CD8 T cells. Collectively, these data define mechanisms by which the IL-6/STAT3 signaling axis can enhance and prolong Pdcd1 expression in murine CD8 T cells. ImmunoHorizons, 2022, 6: 872-882.
The MHC-II locus encodes a cluster of highly polymorphic genes HLA-DR, -DQ, and -DP that are co-expressed in mature B lymphocytes. Two cell lines were established over 30 years ago from a patient diagnosed with acute lymphocytic leukemia. Laz221 represented the leukemic cells of the patient; whereas Laz388 represented the normal B cells of the patient. Whereas Laz388 expressed both HLA-DR and HLA-DQ surface and gene products, Laz221 expressed only HLA-DR genes. The discordant expression of HLA-DR and HLA-DQ genes was due to epigenetic silencing of the HLA-DQ region CTCF-binding insulators that separate the MHC-II subregions by DNA methylation. These epigenetic modifications resulted in the loss of binding of the insulator protein CTCF to the HLA-DQ flanking insulator regions and the MHC-II specific transcription factors to the HLA-DQ promoter regions. These events led to the inability of the HLA-DQ promoter regions to interact with flanking insulators that control HLA-DQ expression. Inhibition of DNA methylation by treatment with 5’deoxyazacytidine reversed each of these changes and restored expression of the HLA-DQ locus. These results highlight the consequence of disrupting an insulator within the MHC-II region and may be a normal developmental mechanism or one used by tumor cells to escape immune surveillance.
Summary
The major histocompatibility complex class II (MHC-II) genes are regulated at the level of transcription. Recent studies have shown that chromatin modification is critical for efficient transcription of these genes, and a number of chromatin modifying complexes recruited to MHC-II genes have been described. The MHC-II genes are segregated from each other by a series of chromatin elements, termed MHC-II insulators. Interactions between MHC-insulators and the promoters of MHC-II genes are mediated by the insulator factor CCCTC-binding protein and are critical for efficient expression. This regulatory mechanism provides a novel view of how the entire MHC-II locus is assembled architecturally and can be coordinately controlled.
Human memory T cells (MTC) are poised to rapidly respond to antigen re-exposure. Here, we derived the transcriptional and epigenetic programs of resting and ex vivo activated, circulating CD4+ and CD8+ MTC subsets. A progressive gradient of gene expression from naïve to TCM to TEM is observed, which is accompanied by corresponding changes in chromatin accessibility. Transcriptional changes suggest adaptations of metabolism that are reflected in altered metabolic capacity. Other differences involve regulatory modalities comprised of discrete accessible chromatin patterns, transcription factor binding motif enrichment, and evidence of epigenetic priming. Basic-helix-loop-helix factor motifs for AHR and HIF1A distinguish subsets and predict transcription networks to sense environmental changes. Following stimulation, primed accessible chromatin correlate with an augmentation of MTC gene expression as well as effector transcription factor gene expression. These results identify coordinated epigenetic remodeling, metabolic, and transcriptional changes that enable MTC subsets to ultimately respond to antigen re-encounters more efficiently.