Omicron SARS-CoV-2 variants escape vaccine-induced neutralizing antibodies and cause nearly all current COVID-19 cases. Here, we compared the efficacy of three booster vaccines against Omicron BA.5 challenge in rhesus macaques: mRNA-1273, the Novavax ancestral spike protein vaccine (NVX-CoV2373), or Omicron BA.1 spike protein version (NVX-CoV2515). All three booster vaccines induced a strong BA.1 cross-reactive binding antibody and changed immunoglobulin G dominance from IgG1 to IgG4 in the serum. All three booster vaccines also induced strong and comparable neutralizing antibody responses against multiple variants of concern, including BA.5 and BQ.1.1, along with long-lived plasma cells in the bone marrow. The ratio of BA.1 to WA-1 spike-specific antibody-secreting cells in the blood was higher in NVX-CoV2515 animals compared to NVX-CoV2373 animals, suggesting a better recall of BA.1 specific memory B cells by the BA.1 spike-specific vaccine compared to the ancestral spike-specific vaccine. Further, all three booster vaccines induced low levels of spike-specific CD4 but not CD8 T cell responses in the blood. Following challenge with SARS-CoV-2 BA.5 variant, all three vaccines showed strong protection in the lungs and controlled virus replication in the nasopharynx. In addition, both Novavax vaccines blunted viral replication in nasopharynx at day 2. The protection against SARS-CoV-2 BA.5 infection in the upper respiratory airways correlated with binding, neutralizing, and ADNP activities of the serum antibody. These data have important implications for COVID-19 vaccine development, as vaccines that lower nasopharyngeal virus may help to reduce transmission.
Background:
Of all human cancers, gastric carcinoma is the one of the leading causes of death. Helicobacter pylori is considered a major etiologic agent of this disease. Spontaneously occurring gastric carcinoma is a rare diagnosis in nonhuman primates. A 2011 case report documented a high incidence of gastric adenocarcinoma in a closed colony of captive sooty mangabeys (Cercebus atys). However, H. pylori infection was not detected in these animals.
Materials and Methods:
In this study, using archived formalin-fixed, paraffin-embedded stomach sections of these animals alternative methodologies were used to identify H. pylori and other non-H. pylori Helicobacter species. In addition, two additional cases of sooty mangabeys with metastatic gastric carcinoma are characterized.
Results:
Using fluorescent in situ hybridization, we identified gastric H. suis in 75% of archived and new gastric carcinoma cases. In the two newly reported cases, H. suis and a novel Helicobacter species were detected via PCR and sequence analysis of the 16S rRNA gene. H. pylori was not identified in any of the gastric carcinoma cases via FISH and/or PCR and sequence analysis of Helicobacter spp. in DNA from of available tissues.
Conclusions:
This report is the first to characterize Helicobacter species infection in spontaneous gastric carcinoma with metastatic potential in nonhuman primates.
No claim to original U.S. Government Works The Zika virus (ZIKV) epidemic is associated with fetal brain lesions and other serious birth defects classified as congenital ZIKV syndrome. Postnatal ZIKV infection in infants and children has been reported; however, data on brain anatomy, function, and behavioral outcomes following infection are absent. We show that postnatal ZIKV infection of infant rhesus macaques (RMs) results in persistent structural and functional alterations of the central nervous system compared to age-matched controls. We demonstrate ZIKV lymphoid tropism and neurotropism in infant RMs and histopathologic abnormalities in the peripheral and central nervous systems including inflammatory infiltrates, astrogliosis, and Wallerian degeneration. Structural and resting-state functional magnetic resonance imaging (MRI/rs-fMRI) show persistent enlargement of lateral ventricles, maturational changes in specific brain regions, and altered functional connectivity (FC) between brain areas involved in emotional behavior and arousal functions, including weakened amygdala-hippocampal connectivity in two of two ZIKV-infected infant RMs several months after clearance of ZIKV RNA from peripheral blood. ZIKV infection also results in distinct alterations in the species-typical emotional reactivity to acute stress, which were predicted by the weak amygdala-hippocampal FC. We demonstrate that postnatal ZIKV infection of infants in this model affects neurodevelopment, suggesting that long-term clinical monitoring of pediatric cases is warranted.
Effective therapeutics aimed at mitigating COVID-19 symptoms are urgently needed. SARS-CoV-2 induced hypercytokinemia and systemic inflammation are associated with disease severity. Baricitinib, a clinically approved JAK1/2 inhibitor with potent anti-inflammatory properties is currently being investigated in COVID-19 human clinical trials. Recent reports suggest that baricitinib may also have antiviral activity in limiting viral endocytosis. Here, we investigated the immunologic and virologic efficacy of baricitinib in a rhesus macaque model of SARS-CoV-2 infection. Viral shedding measured from nasal and throat swabs, bronchoalveolar lavages and tissues was not reduced with baricitinib. Type I IFN antiviral responses and SARS-CoV-2 specific T cell responses remained similar between the two groups. Importantly, however, animals treated with baricitinib showed reduced immune activation, decreased infiltration of neutrophils into the lung, reduced NETosis activity, and more limited lung pathology. Moreover, baricitinib treated animals had a rapid and remarkably potent suppression of alveolar macrophage derived production of cytokines and chemokines responsible for inflammation and neutrophil recruitment. These data support a beneficial role for, and elucidate the immunological mechanisms underlying, the use of baricitinib as a frontline treatment for severe inflammation induced by SARS-CoV-2 infection.
Mother-to-infant transmission (MTIT) of HIV is a serious global health concern, with over 300,000 children newly infected in 2011. SIV infection of rhesus macaques (RMs) results in similar rates of MTIT to that of HIV in humans. In contrast, SIV infection of sooty mangabeys (SMs) rarely results in MTIT. The mechanisms underlying protection from MTIT in SMs are unknown. In this study we tested the hypotheses that breast milk factors and/or target cell availability dictate the rate of MTIT in RMs (transmitters) and SMs (non-transmitters). We measured viral loads (cell-free and cell-associated), levels of immune mediators, and the ability to inhibit SIV infection in vitro in milk obtained from lactating RMs and SMs. In addition, we assessed the levels of target cells (CD4+CCR5+ T cells) in gastrointestinal and lymphoid tissues, including those relevant to breastfeeding transmission, as well as peripheral blood from uninfected RM and SM infants. We found that frequently-transmitting RMs did not have higher levels of cell-free or cell-associated viral loads in milk compared to rarely-transmitting SMs. Milk from both RMs and SMs moderately inhibited in vitro SIV infection, and presence of the examined immune mediators in these two species did not readily explain the differential rates of transmission. Importantly, we found that the percentage of CD4+CCR5+ T cells was significantly lower in all tissues in infant SMs as compared to infant RMs despite robust levels of CD4+ T cell proliferation in both species. The difference between the frequently-transmitting RMs and rarely-transmitting SMs was most pronounced in CD4+ memory T cells in the spleen, jejunum, and colon as well as in central and effector memory CD4+ T cells in the peripheral blood. We propose that limited availability of SIV target cells in infant SMs represents a key evolutionary adaptation to reduce the risk of MTIT in SIV-infected SMs.
Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences.
Background: The sooty mangabey is a vulnerable West African species that naturally harbors simian immunodeficiency virus (SIV) without pathological symptoms. We present normative hematology and serum chemistry values for this species.
Methods: Hematology analytes from 136 females and 96 males and serum chemistry analytes from 57 females and 26 males were studied.
Results: Values of several analytes fell outside published reference ranges in the rhesus monkey, a laboratory standard for Old World primates. Erythrocyte-related parameters were higher in mangabeys than in rhesus monkeys, while platelet counts were lower. Mangabeys also had higher gamma-glutamyltransferase levels and lower urea nitrogen levels. Males had higher erythrocyte-associated values than females. Albumin, globulin, albumin/globulin ratio, calcium, and creatinine changed with age in patterns similar to those reported for the rhesus monkey.
Conclusions: The unique blood profile of the mangabey should be taken into account in clinical and experimental studies of this species.
by
Rudolf P Bohm;
Matthew W Breed;
Joyce Cohen;
Andrew J Haertel;
Lisa C Halliday;
Joshua A Kramer;
Mia T Lieberman;
Kelly A Rice;
Jeffery A Roberts;
Kasi E Russell-Logrigue;
Gregory W Salyards;
Diana G Scorpio;
Scott J Weese
In this letter, we raise concerns regarding the recent publication, “Mitigation of endemic GI-tract pathogen-mediated inflammation through development of multimodal treatment regimen and its impact on SIV acquisition in rhesus macaques” [1]. This study describes the use of a prophylactic multimodal regimen of three to four different antimicrobial agents including a fluoroquinolone, a macrolide, an aminoglycoside, and a benzimidazole in clinically normal rhesus macaques at two different institutions. After the administration of the multimodal treatments, they state that this has created “Gastrointestinal Pathogen Free (GPF)” macaques that are more suited for HIV preclinical research. While we believe it is an admirable goal to develop, refine, and characterize new NHP models for HIV research, we are concerned that the authors do not adequately evaluate development of antimicrobial resistance and the associated risks to human and animal health.
Ongoing SARS-CoV-2 vaccine development is focused on identifying stable, cost-effective, and accessible candidates for global use, specifically in low and middle-income countries. Here, we report the efficacy of a rapidly scalable, novel yeast expressed SARS-CoV-2 specific receptor-binding domain (RBD) based vaccine in rhesus macaques. We formulated the RBD immunogen in alum, a licensed and an emerging alum adsorbed TLR-7/8 targeted, 3M-052-alum adjuvants. The RBD+3M-052-alum adjuvanted vaccine promoted better RBD binding and effector antibodies, higher CoV-2 neutralizing antibodies, improved Th1 biased CD4+T cell reactions, and increased CD8+ T cell responses when compared to the alum-alone adjuvanted vaccine. RBD+3M-052-alum induced a significant reduction of SARS-CoV-2 virus in respiratory tract upon challenge, accompanied by reduced lung inflammation when compared with unvaccinated controls. Anti-RBD antibody responses in vaccinated animals inversely correlated with viral load in nasal secretions and BAL. RBD+3M-052-alum blocked a post SARS-CoV-2 challenge increase in CD14+CD16++ intermediate blood monocytes, and Fractalkine, MCP-1, and TRAIL in the plasma. Decreased plasma analytes and intermediate monocyte frequencies correlated with reduced nasal and BAL viral loads. Lastly, RBD-specific plasma cells accumulated in the draining lymph nodes and not in the bone marrow, contrary to previous findings. Together, these data show that a yeast expressed, RBD-based vaccine+3M-052-alum provides robust immune responses and protection against SARS-CoV-2, making it a strong and scalable vaccine candidate.
Mycotic aortic aneurysm is a local, irreversible dilatation of the aorta associated with destruction of the vessel wall by infection and is a grave clinical condition associated with high morbidity and mortality in humans. Rupture of aortic aneurysms can be spontaneous, idiopathic, or due to severe trauma, and the condition has been associated with bacterial and, rarely, fungal infections in humans and animals. Here, we describe a case of ruptured spontaneous aortic aneurysm associated with zygomycetic infection in a 21-y-old female sooty mangabey. The animal did not present with any significant clinical signs before being found dead. At necropsy, she was in good body condition, and the thoracic cavity had a large amount of clotted blood filling the left pleural space and surrounding the lung lobes. Near the aortic arch, the descending thoracic aorta was focally perforated (diameter, approximately 0.15 cm), and clotted blood adhered to the tunica adventitia. The aortic intima had multiple, firm, pale-yellow nodules (diameter, 0.25 to 0.5 cm). Histopathologically, these nodules consisted of severe multifocal pyogranulomatous inflammation intermixed with necrosis, fibrin, and broad, infrequently septate, thin-walled fungal hyphae. Immunohistochemistry revealed fungal hyphae characteristic of Mucormycetes (formerly Zygomycetes), and PCR analysis identified the organism as Basidiobolus spp. Dissemination of the fungus beyond the aorta was not noted. Spontaneous aortic aneurysms have been described in nonhuman primates, but this is the first reported case of a ruptured spontaneous aortic aneurysm associated with entomophthoromycetic infection in a sooty mangabey.