Background. A major goal in influenza vaccine development is induction of serological memory and cellular responses to confer long-term protection and limit virus spread after infection. Here, we investigate induction of long-lived immunity against the 2009 H1N1 virus after skin vaccination.
Methods. BALB/c mice received a single dose of 5 μg inactivated A/California/04/09 virus via coated metal microneedles (MN) applied to skin or via subcutaneous injection.
Results. MN or subcutaneous vaccination elicited similar serum IgG and hemagglutination inhibition titers and 100% protection against lethal viral challenge 6 weeks after vaccination. Six months after vaccination, the subcutaneous group exhibited a 60% decrease in functional antibody titers and extensive lung inflammation after challenge with 10 × LD50 of homologous virus. In contrast, the MN group maintained high functional antibody titers and IFN-γ levels, inhibition of viral replication, and no signs of lung inflammation after challenge. MN vaccination conferred complete protection against lethal challenge, whereas subcutaneous vaccination induced only partial protection. These findings were further supported by high numbers of bone marrow plasma cells and spleen antibody-secreting cells detected in the MN group.
Conclusions. A single skin vaccination with MN induced potent long-lived immunity and improved protection against the 2009 H1N1 influenza virus, compared with subcutaneous injection.
The role of pre-existing immunity for influenza vaccine responses is of great importance for public health, and thus has been studied in various contexts, yet the impact of differential priming on vaccine responses in the midst of antigenic drift remains to be elucidated. To address this with antigenically related viruses, mice were first primed by either infection or immunization with A/Puerto Rico/8/34 (PR8) virus, then immunized with whole-inactivated A/Fort Monmouth/1/47 (FM1) virus. The ensuing vaccine responses and the protective efficacy of FM1 were superior in PR8 infection-primed mice compared to PR8 immunization-primed or unprimed mice. Increased FM1-specific Ab responses of PR8 infection-primed mice also broadened cross-reactivity against contemporary as well as antigenically more drifted strains. Further, prior infection heightened the protective efficacy of antigenically distant strains, such as A/Brisbane/59/2006 infection followed by immunization with split pandemic H1N1 vaccine (A/California/07/2009). Therefore, influenza infection is a significant priming event that intensifies future vaccine responses against drift strains.
The original version of this Article contained an error in the spelling of the author Frances Eun-Hyung Lee that was incorrectly given as Francis Eun-Hyung Lee. This has now been corrected in both the PDF and HTML versions of the Article.
The squalene-based oil-in-water emulsion (SE) vaccine adjuvant MF59 has been administered to more than 100 million people in more than 30 countries, in both seasonal and pandemic influenza vaccines. Despite its wide use and efficacy, its mechanisms of action remain unclear. In this study we demonstrate that immunization of mice with MF59 or its mimetic AddaVax (AV) plus soluble antigen results in robust antigen-specific antibody and CD8 T cell responses in lymph nodes and non-lymphoid tissues. Immunization triggered rapid RIPK3-kinase dependent necroptosis in the lymph node which peaked at 6 hr, followed by a sequential wave of apoptosis. Immunization with alum plus antigen did not induce RIPK3-dependent signaling. RIPK3-dependent signaling induced by MF59 or AV was essential for cross-presentation of antigen to CD8 T cells by Batf3-dependent CD8+ DCs.
Consistent with this, RIPK3 deficient or Batf3 deficient mice were impaired in their ability to mount adjuvant-enhanced CD8 T cell responses. However, CD8 T cell responses were unaffected in mice deficient in MLKL, a downstream mediator of necroptosis. Surprisingly, antibody responses were unaffected in RIPK3-kinase or Batf3 deficient mice. In contrast, antibody responses were impaired by in vivo administration of the pan-caspase inhibitor Z-VAD-FMK, but normal in caspase-1 deficient mice, suggesting a contribution from apoptotic caspases, in the induction of antibody responses. These results demonstrate that squalene emulsion-based vaccine adjuvants induce antigen-specific CD8 T cell and antibody responses, through RIPK3-dependent and-independent pathways, respectively.
by
Jin Hyang Kim;
Adrian J. Reber;
Amrita Kumar;
Patricia Ramos;
Gabriel Sica;
Nedzad Music;
Zhu Guo;
Margarita Mishina;
James Stevens;
Ian A. York;
Joshy Jacob;
Suryaprakash Sambhara
The association of seasonal trivalent influenza vaccine (TIV) with increased infection by 2009 pandemic H1N1 (A(H1N1)pdm09) virus, initially observed in Canada, has elicited numerous investigations on the possibility of vaccine-associated enhanced disease, but the potential mechanisms remain largely unresolved. Here, we investigated if prior immunization with TIV enhanced disease upon A(H1N1)pdm09 infection in mice. We found that A(H1N1)pdm09 infection in TIV-immunized mice did not enhance the disease, as measured by morbidity and mortality. Instead, TIV-immunized mice cleared A(H1N1)pdm09 virus and recovered at an accelerated rate compared to control mice. Prior TIV immunization was associated with potent inflammatory mediators and virus-specific CD8 T cell activation, but efficient immune regulation, partially mediated by IL-10R-signaling, prevented enhanced disease. Furthermore, in contrast to suggested pathological roles, pre-existing non-neutralizing antibodies (NNAbs) were not associated with enhanced virus replication, but rather with promoted antigen presentation through FcR-bearing cells that led to potent activation of virus-specific CD8 T cells. These findings provide new insights into interactions between pre-existing immunity and pandemic viruses.
Long-lived plasma cells are critical to humoral immunity as a lifelong source of protective antibodies. Antigen-activated B cells-with T-cell help-undergo affinity maturation within germinal centres and persist as long-lived IgG plasma cells in the bone marrow. Here we show that antigen-specific, induced IgM plasma cells also persist for a lifetime. Unlike long-lived IgG plasma cells, which develop in germinal centres and then home to the bone marrow, IgM plasma cells are primarily retained within the spleen and can develop even in the absence of germinal centres. Interestingly, their expressed IgV loci exhibit somatic mutations introduced by the activation-induced cytidine deaminase (AID). However, these IgM plasma cells are probably not antigen-selected, as replacement mutations are spread through the variable segment and not enriched within the CDRs. Finally, antibodies from long-lived IgM plasma cells provide protective host immunity against a lethal virus challenge.
Therapeutic use and function of recombinant molecules can be studied by the expression of foreign genes in mice. In this study, we have expressed human Fcgamma receptor –Ig fusion molecules (FcγR-Igs) in mice by administering FcγR-Ig plasmid DNAs hydrodynamically and compared their effectiveness to purified molecules in blocking immune-complex (IC) mediated inflammation in mice. The concentration of hydrodynamically expressed FcγR-Igs (CD16AF-Ig, CD32AR-Ig and CD32AH-Ig) reached a maximum of 130 μg/ml of blood within 24 h after plasmid DNA administration. The in vivo half-life of FcγR-Igs was found to be 9-16 days and Western blot analysis showed that the FcγR-Igs were expressed as a homodimer. The hydrodynamically expressed FcγR-Igs blocked 50-80% of IC-mediated inflammation up to 3 days in a reverse passive Arthus reaction model. Comparative analysis with purified molecules showed that hydrodynamically expressed FcγR-Igs are more efficient than purified molecules in blocking IC-mediated inflammation and had a higher half-life. In summary, these results suggest that the administration of a plasmid vector with a FcγR-Ig gene can be used to study the consequences of blocking IC-binding to FcγRs during the development of inflammatory diseases. This approach may have potential therapeutic value in treating IC-mediated inflammatory autoimmune diseases such as lupus, arthritis and autoimmune vasculitis.
Human gammaherpesviruses are associated with the development of lymphoproliferative diseases and B cell lymphomas, particularly in immunosuppressed hosts. Understanding the molecular mechanisms by which human gammaherpesviruses cause disease is hampered by the lack of convenient small animal models to study them. However, infection of laboratory strains of mice with the rodent virus murine gammaherpesvirus 68 (MHV68) has been useful in gaining insights into how gammaherpesviruses contribute to the genesis and progression of lymphoproliferative lesions. In this report we make the novel observation that MHV68 infection of murine day 15 fetal liver cells results in their immortalization and differentiation into B plasmablasts that can be propagated indefinitely in vitro, and can establish metastasizing lymphomas in mice lacking normal immune competence. The phenotype of the MHV68 immortalized B cell lines is similar to that observed in lymphomas caused by KSHV and resembles the favored phenotype observed during MHV68 infection in vivo. All established cell lines maintained the MHV68 genome, with limited viral gene expression and little or no detectable virus production - although virus reactivation could be induced upon crosslinking surface Ig. Notably, transcription of the genes encoding the MHV68 viral cyclin D homolog (v-cyclin) and the homolog of the KSHV latency-associated nuclear antigen (LANA), both of which are conserved among characterized γ2-herpesviruses, could consistently be detected in the established B cell lines. Furthermore, we show that the v-cyclin and LANA homologs are required for MHV68 immortalization of murine B cells. In contrast the M2 gene, which is unique to MHV68 and plays a role in latency and virus reactivation in vivo, was dispensable for B cell immortalization. This new model of gammaherpesvirus-driven B cell immortalization and differentiation in a small animal model establishes an experimental system for detailed investigation of the role of gammaherpesvirus gene products and host responses in the genesis and progression of gammaherpesvirus-associated lymphomas, and presents a convenient system to evaluate therapeutic modalities.
Detection of immunoglobulin M (IgM) antibodies has long been used as an important diagnostic tool for identifying active viral infections, but their relevance in later stages has not been clearly defined in vivo. In this study, we followed the kinetics, longevity, and function of influenza virus-specific IgM antibodies for 2 years following sublethal infection of mice with live mouseadapted A/PR/8/34 virus or immunization with formalin-inactivated virus. These groups mounted robust protective immune responses and survived lethal challenges with 50 × 50% lethal dose (LD50) mouse-adapted A/PR/8/34 virus 600 days after the primary exposure. Surprisingly, the virus-specific IgM antibodies persisted along with IgG antibodies, and we found a significantly higher number of IgM-positive (IgM+) virus-specific plasma cells than IgG+plasma cells that persisted for at least 9 months postexposure. The IgM antibodies were functional as they neutralized influenza virus in the presence of complement just as well as IgG antibodies did.
Fluorescent proteins are increasingly being used to analyze cellular gene expression and to facilitate tracking of cell lineages in vivo. One of these, enhanced yellow fluorescent protein (EYFP) has several properties such as intense fluorescence and little to no toxicity in cells, which makes it an excellent molecule to label proteins and cells of interest. In live cells, visualization of EYFP has been highly successful; however, detection of EYFP in lymphoid tissue sections, particularly in combination with other markers of interest has been difficult. This is because of the enhanced solubility of EYFP in the absence of fixation. When extended fixation protocols are employed, EYFP is preserved but detection of other cellular antigens becomes problematic due to over fixation. Here we demonstrate that EYFP-expressing T and B cells can be efficiently visualized in lymphoid tissue sections without compromising the ability to detect other cellular markers.