by
Arlene Stecenko;
Tanicia Daley Jean Pierre;
Jessica Alvarez;
MS Putman;
AW Norris;
RL Hull;
MR Rickels;
L Sussel;
SM Blackman;
CL Chan;
KL Ode;
T Daley;
A Moran;
MJ Helmick;
S Cray;
VA Stallings;
KL Tuggle;
JP Clancy;
TL Eggerman;
JF Engelhardt;
A Kelly
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field’s understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23–25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
by
Melissa S. Putman;
Andrew W. Norris;
Rebecca L. Hull;
Michael R. Rickels;
Lori Sussel;
Scott M. Blackman;
Christine L. Chan;
Katie Larson Ode;
Tanicia Daley Jean Pierre;
Arlene Stecenko;
Antoinette Moran;
Meagan J. Helmick;
Sharon Cray;
Jessica Alvarez;
Virginia A. Stallings;
Katherine L. Tuggle;
John P. Clancy;
Thomas L. Eggerman;
John F. Engelhardt;
Andrea Kelly
Cystic fibrosis (CF) is a recessive disorder arising from mutations in the gene encoding the cystic fibrosis transmembrane conductance regulator (CFTR) protein. CFTR is expressed in numerous tissues, with high expression in the airways, small and large intestine, pancreatic and hepatobiliary ducts, and male reproductive tract. CFTR loss in these tissues disrupts regulation of salt, bicarbonate, and water balance across their epithelia, resulting in a systemic disorder with progressive organ dysfunction and damage. Pancreatic exocrine damage ultimately manifests as pancreatic exocrine insufficiency that begins as early as infancy. Pancreatic remodeling accompanies this early damage, during which abnormal glucose tolerance can be observed in toddlers. With increasing age, however, insulin secretion defects progress such that CF-related diabetes (CFRD) occurs in 20% of teens and up to half of adults with CF. The relevance of CFRD is highlighted by its association with increased morbidity, mortality, and patient burden. While clinical research on CFRD has greatly assisted in the care of individuals with CFRD, key knowledge gaps on CFRD pathogenesis remain. Furthermore, the wide use of CFTR modulators to restore CFTR activity is changing the CFRD clinical landscape and the field’s understanding of CFRD pathogenesis. For these reasons, the National Institute of Diabetes and Digestive and Kidney Diseases and the Cystic Fibrosis Foundation sponsored a CFRD Scientific Workshop, 23–25 June 2021, to define knowledge gaps and needed research areas. This article describes the findings from this workshop and plots a path for CFRD research that is needed over the next decade.
BACKGROUND: Despite early diagnosis and compliance with phenylalanine (Phe)-restricted diets, many individuals with phenylketonuria (PKU) still exhibit neurological changes and experience deficits in working memory and other executive functions. Suboptimal choline intake may contribute to these impairments, but this relationship has not been previously investigated in PKU. The objective of this study was to determine if choline intake is correlated with working memory performance, and if this relationship is modified by diagnosis and metabolic control. METHODS: This was a cross-sectional study that included 40 adults with PKU and 40 demographically matched healthy adults. Web-based neurocognitive tests were used to assess working memory performance and 3-day dietary records were collected to evaluate nutrient intake. Recent and historical blood Phe concentrations were collected as measures of metabolic control. RESULTS: Working memory performance was 0.32 z-scores (95% CI 0.06, 0.58) lower, on average, in participants with PKU compared to participants without PKU, and this difference was not modified by total choline intake (F[1,75] = 0.85, p = 0.36). However, in a subgroup with complete historical blood Phe data, increased total choline intake was related to improved working memory outcomes among participants with well controlled PKU (Phe = 360 µmol/L) after adjusting for intellectual ability and mid-childhood Phe concentrations (average change in working memory per 100 mg change in choline = 0.11; 95% CI 0.02, 0.20; p = 0.02). There also was a trend, albeit nonsignificant (p = 0.10), for this association to be attenuated with increased Phe concentrations. CONCLUSIONS: Clinical monitoring of choline intake is essential for all individuals with PKU but may have important implications for working memory functioning among patients with good metabolic control. Results from this study should be confirmed in a larger controlled trial in people living with PKU.
Background/objectives: Disruptions in redox balance lead to oxidative stress, a promoter of morbidity in critical illness. This study aimed to: (1) characterize the plasma and alveolar thiol/disulfide redox pools, (2) examine their associations with alveolar macrophage phagocytosis, and (3) determine the effect of high dose Vitamin D3on plasma thiol/disulfide redox. Subjects/methods: Subjects were 30 critically ill, ventilated adults in a double-blind randomized trial of high-dose (250 000 or 500 000 IU) Vitamin D3or placebo. Baseline bronchoalveolar lavage fluid (BALF) samples were analyzed for determination of alveolar phagocytosis index (PI) and for concentrations of glutathione (GSH), glutathione disulfide (GSSG), cysteine (Cys), cystine (CySS), and their respective redox potentials (EhGSSG and EhCySS). Plasma redox outcomes were assessed at baseline and days 7 and 14. Results: Baseline plasma Cys was inversely associated with alveolar PI (ρ = -0.69, P = 0.003), and EhCySS was positively associated with PI (ρ = 0.61, P = 0.01). Over time, among all subjects there was an increase in plasma GSH levels and a decrease in EhGSSG (P < 0.01 for both), with no difference by treatment group. Vitamin D3decreased oxidized plasma GSSG to a more normal state (P for group x time = 0.009). Conclusions: Oxidative stress indicators were positively associated with alveolar macrophage phagocytic function in acutely ill ventilated adults. High-dose Vitamin D3decreased plasma GSSG concentrations, which suggests that Vitamin D can possibly improve the oxidative stress environment.
Objective: Cystic fibrosis-related diabetes (CFRD) affects up to half of the people with cystic fibrosis (CF) by adulthood. CFRD is primarily caused by pancreatic dysfunction that leads to insufficient insulin release and/or insulin resistance. Exocrine pancreatic insufficiency in people with CF is associated with fat-soluble vitamin malabsorption, including vitamins A, D, E, and K. This study examined the relationship between vitamin D status, assessed by serum 25-hydroxyvitamin D (25(OH)D), and the development of CF-related diabetes (CFRD) in adults with CF. Methods: This was a retrospective cohort study of adults seen at a single CF center. The data were extracted from the electronic medical records and the Emory Clinical Data Warehouse, a data repository of health information from patients seen at Emory Healthcare. We collected age, race, the first recorded serum 25-hydroxyvitamin D (25(OH)D) concentration, body mass index (BMI), and onset of diabetes diagnosis. Log-rank (Mantel–Cox) tests were used to compare the relative risk of CFRD onset in the subjects with stratified vitamin D status and weight status. A sub-group analysis using chi-square tests assessed the independence between vitamin D deficiency and CFRD risk factors, including gender and CF mutation types (homozygous or heterozygous for F508del, or others). Unpaired t-tests were also used to compare the BMI values and serum 25(OH)D between the CF adults based on the CFRD development. Results: This study included 253 subjects with a mean age of 27.1 years (±9.0), a mean follow-up time period of 1917.1 (±1394.5) days, and a mean serum 25(OH)D concentration of 31.8 ng/mL (±14.0). The majority (52.6%) of the subjects developed CFRD during the study period. Vitamin D deficiency (defined as 25(OH)D < 20 ng/mL) was present in 25.3% of the subjects. Close to two thirds (64.1%) of the subjects with vitamin D deficiency developed CFRD during the study. Vitamin D deficiency increased the risk of developing CFRD (chi-square, p = 0.03) during the course of the study. The time to the onset of CFRD stratified by vitamin D status was also significant (25(OH)D < 20 ng/mL vs. 25(OH)D ≥ 20 ng/mL) (95% CI: 1.2, 2.7, p < 0.0078). Conclusion: Our findings support the hypothesis that adults with CF and vitamin D deficiency are at a higher risk of developing CFRD and are at risk for earlier CFRD onset. The maintenance of a serum 25(OH)D concentration above 20 ng/mL may decrease the risk of progression to CFRD.
Objective Redox status and inflammation are important in the pathophysiology of numerous chronic diseases. Epidemiological studies have linked vitamin D status to a number of chronic diseases. We aimed to examine the relationships between serum 25-hydroxyvitamin D [25(OH)D] and circulating thiol/disulphide redox status and biomarkers of inflammation. Design This was a cross-sectional study of N = 693 adults (449 females, 244 males) in an apparently healthy, working cohort in Atlanta, GA. Plasma glutathione (GSH), cysteine (Cys) and their associated disulphides were determined with high-performance liquid chromatography, and their redox potentials (E h GSSG and Eh CySS) were calculated using the Nernst equation. Serum inflammatory markers included interleukin-6 (IL-6), interleukin-8 (IL-8) and tumour necrosis factor-α, assayed on a multiplex platform, and C-reactive protein (CRP), assayed commercially. Relationships were assessed with multiple linear regression analyses. Results Serum 25(OH)D was positively associated with plasma GSH (β ± SE: 0·002 ± 0·0004) and negatively associated with plasma Eh GSSG (β ± SE: -0·06 ± 0·01) and Cys (β ± SE: -0·01 ± 0·003) (P < 0·001 for all); statistical significance remained after adjusting for age, gender, race, percentage body fat and traditional cardiovascular risk factors (P = 0·01-0·02). The inverse relationship between serum 25(OH)D and CRP was confounded by percentage body fat, and full adjustment for covariates attenuated serum 25(OH)D relationships with other inflammatory markers to nonstatistical significance. Conclusions Serum 25(OH)D concentrations were independently associated with major plasma thiol/disulphide redox systems, suggesting that vitamin D status may be involved in redox-mediated pathophysiology.
Objective
The role of vitamin D in cardiovascular health remains debated as results have been inconsistent. Previous studies have not considered the bioavailability of 25-hydroxy vitamin D [25(OH)D]. Objectives of our study were to investigate the association between serum concentrations of total, free and bioavailable 25(OH)D and independent predictors of cardiovascular risk such as flow mediated dilatation (FMD) and augmentation index (AIx).
Design
This cross-sectional study included 47 post-menarchal, adolescent females [31 African American (AA) and 16 European American (EA)].
Methods
AIx was standardized to a heart rate of 75 beats/min (AIx75). Free and bioavailable 25(OH)D concentrations were calculated from standard formulas.
Results and Conclusions
Mean age of the participants was 15.8±1.4 years and mean body mass index was 23.1±4.0 kg/m2. Serum total 25(OH)D was not associated with FMD, but was positively associated with AIx75 in the adjusted model (rho = 0.4, P = 0.03). AIx75 was positively associated with bioavailable 25(OH)D (rho = 0.4, P = 0.004) and free 25(OH)D (rho = 0.4, P = 0.009) and the associations persisted after adjusting for covariates. In race-specific analyses, total, free and bioavailable 25(OH)D were strongly positively associated with AIx75 in AA (rho = 0.5, 0.4, 0.4, respectively), which persisted even after adjusting for covariates. Whereas in EA there was an inverse association between total 25(OH)D and AIx75 in EA (rho = −0.6), which attenuated after adjusting for covariates.
Conclusion
Circulating total, free and bioavailable 25(OH)D were associated with arterial stiffness in adolescent girls, and these associations were race dependent. Notwithstanding, the implications of associations between vascular function indices and 25(OH)D remains unclear.
Choline is an essential nutrient for brain development and function that is attained through high-protein foods, which are limited in the phenylalanine-restricted diet of people with phenylketonuria (PKU). This study compared choline consumption among individuals with PKU to a reference sample from the National Health and Nutrition Examination Survey (NHANES), and identified treatment and diet-related factors that may modulate choline needs. Participants were individuals with PKU (n = 120, 4–61 years) managed with dietary therapy alone (n = 49), sapropterin dihydrochloride for ≥1 year (n = 38), or pegvaliase for ≥1 year with no medical food (n = 33). NHANES participants were not pregnant or nursing and came from the 2015–2018 cycles (n = 10,681, 4–70 years). Dietary intake data were used to estimate total usual intake distributions for choline, and mean probability of adequacy (MPA) was calculated as a summary index of nutrient adequacy for four methyl-donor/co-factor nutrients that impact choline utilization (folate, vitamin B12, vitamin B6, and methionine). Only 10.8% (SE: 2.98) of the total PKU sample (14.7% [SE: 4.03] of children; 6.8% [SE: 2.89] of adults) achieved the adequate intake (AI) for choline, while 12.2% (SE:0.79) of the NHANES sample met the recommended level. Adults receiving pegvaliase were the most likely to exceed the AI for choline (14.82% [SE: 4.48]), while adults who were on diet therapy alone were the least likely (5.59% [SE: 2.95]). Without fortified medical foods, individuals on diet therapy and sapropterin would not be able to achieve the AI, and MPA for other methyl donor/co-factor nutrients would be reduced. More frequent monitoring of choline intake and increased choline fortification of medical foods could benefit this population.
Obesity and obesity-related metabolic disorders are linked to the intestinal microbiome. However, the causality of changes in the microbiome–host interaction affecting energy metabolism remains controversial. Here, we show the microbiome-derived metabolite δ-valerobetaine (VB) is a diet-dependent obesogen that is increased with phenotypic obesity and is correlated with visceral adipose tissue mass in humans. VB is absent in germ-free mice and their mitochondria but present in ex-germ-free conventionalized mice and their mitochondria. Mechanistic studies in vivo and in vitro show VB is produced by diverse bacterial species and inhibits mitochondrial fatty acid oxidation through decreasing cellular carnitine and mitochondrial long-chain acyl-coenzyme As. VB administration to germ-free and conventional mice increases visceral fat mass and exacerbates hepatic steatosis with a western diet but not control diet. Thus, VB provides a molecular target to understand and potentially manage microbiome–host symbiosis or dysbiosis in diet-dependent obesity.
Background: Individuals with cystic fibrosis (CF) have difficulty maintaining optimal vitamin D status due to pancreatic insufficiency-induced malabsorption, inadequate sunlight exposure, and poor intake of vitamin D containing foods. Vitamin D deficiency may increase the risk of pulmonary exacerbations of CF. The objective of this study was to assess factors impacting vitamin D status in patients with CF recently hospitalized for a pulmonary exacerbation of CF. Methods: This was a pre-planned analysis of vitamin D intake in patients enrolled in a multi-center, double-blind, randomized controlled study examining vitamin D therapy for pulmonary exacerbation of CF. Demographic information, responses from a habitual sun exposure questionnaire and food frequency questionnaire, and vitamin D supplement usage were queried and compared to serum 25-hydroxyvitamin D (25(OH)D) concentrations. Results: A total of 48 subjects were included in this analysis. Subjects were taking approximately 1,200 IU of vitamin D daily. Reported vitamin D intake, age, race, employment, and education were not significantly associated with vitamin D status in this population. However, smoking status, sunlight exposure in the last 3 years, and skin type (in the bivariate model) were all significantly associated with vitamin D status (all p<0.05). Conclusions: Sunlight exposure was the most predictive determinant of vitamin D status in patients with CF prior to pulmonary exacerbation. Subjects reported vitamin D intake below the recommended amounts. The role and mode of optimizing vitamin D status prior to a pulmonary exacerbation needs further investigation.