Oxytocin (OXT) is a highly conserved neuropeptide that modulates social cognition, and variation in its receptor gene (Oxtr) is associated with divergent social phenotypes. The cellular mechanisms connecting Oxtr genotype to social phenotype remain obscure. We exploit an association between Oxtr polymorphisms and striatal-specific OXTR density in prairie voles to investigate how OXTR signaling influences the brain transcriptome. We discover widespread, OXTR signaling-dependent transcriptomic changes. Interestingly, OXTR signaling robustly modulates gene expression of C-type lectin-like receptors (CTLRs) in the natural killer gene complex, a genomic region associated with immune function. CTLRs are positioned to control microglial synaptic pruning; a process important for shaping neural circuits. Similar relationships between OXTR RNA and CTLR gene expression were found in human striatum. These data suggest a potential molecular mechanism by which variation in OXTR signaling due to genetic background and/or life-long social experiences, including nurturing/neglect, may affect circuit connectivity and social behavior.
Human immunodeficiency virus (HIV) persists indefinitely in individuals with HIV who receive antiretroviral therapy (ART) owing to a reservoir of latently infected cells that contain replication-competent virus1–4. Here, to better understand the mechanisms responsible for latency persistence and reversal, we used the interleukin-15 superagonist N-803 in conjunction with the depletion of CD8+ lymphocytes in ART-treated macaques infected with simian immunodeficiency virus (SIV). Although N-803 alone did not reactivate virus production, its administration after the depletion of CD8+ lymphocytes in conjunction with ART treatment induced robust and persistent reactivation of the virus in vivo. We found viraemia of more than 60 copies per ml in all macaques (n = 14; 100%) and in 41 out of a total of 56 samples (73.2%) that were collected each week after N-803 administration. Notably, concordant results were obtained in ART-treated HIV-infected humanized mice. In addition, we observed that co-culture with CD8+ T cells blocked the in vitro latency-reversing effect of N-803 on primary human CD4+ T cells that were latently infected with HIV. These results advance our understanding of the mechanisms responsible for latency reversal and lentivirus reactivation during ART-suppressed infection.
While mothering is often instinctive and stereotyped in species-specific ways, evolution can favor genetically “open” behavior programs that allow experience to shape infant care. Among experience-dependent maternal behavioral mechanisms, sensory learning about infants has been hard to separate from motivational changes arising from sensitization with infants. We developed a paradigm in which sensory learning of an infant-associated cue improves a stereotypical maternal behavior in female mice. Mice instinctively employed a spatial memory-based strategy when engaged repetitively in a pup search and retrieval task. However, by playing a sound from a T-maze arm to signal where a pup will be delivered for retrieval, mice learned within 7 days and retained for at least 2 weeks the ability to use this specific cue to guide a more efficient search strategy.
The motivation to retrieve pups also increased with learning on average, but their correlation did not explain performance at the trial level. Bilaterally silencing auditory cortical activity significantly impaired the utilization of new strategy without changing the motivation to retrieve pups. Finally, motherhood as compared to infant-care experience alone accelerated how quickly the new sensory-based strategy was acquired, suggesting a role for the maternal hormonal state. By rigorously establishing that newly formed sensory associations can improve the performance of a natural maternal behavior, this work facilitates future studies into the neurochemical and circuit mechanisms that mediate novel sensory learning in the maternal context, as well as more learning-based mechanisms of parental behavior in rodents.
by
Christopher C. Nixon;
Maud Mavigner;
Gavin C. Sampey;
Alyssa D. Brooks;
Rae Ann Spagnuolo;
David M. Irlbeck;
Cameron Mattingly;
Phong T. Ho;
Nils Schoof;
Corinne G. Cammon;
Greg K. Tharp;
Matthew Kanke;
Zhang Wang;
Rachel A. Cleary;
Amit Upadhyay;
Chandrav De;
Saintedym R. Wills;
Shane D. Falcinelli;
Cristin Galardi;
Hasse Walum;
Nathaniel J. Schramm;
Jennifer Deutsch;
Jeffrey D. Lifson;
Christine M. Fennessey;
Brandon F. Keele;
Sherrie Jean;
Sean Maguire;
Baolin Liao;
Edward P. Browne;
Robert G. Ferris;
Jessica H. Brehm;
David Favre;
Thomas Vanderford;
Steven Bosinger;
Corbin D. Jones;
Jean-Pierre Routy;
Nancie M. Archin;
David M. Margolis;
Angela Wahl;
Richard M. Dunham;
Guido Silvestri;
Ann Chahroudi;
J. Victor Garcia
Long-lasting, latently infected resting CD4+ T cells are the greatest obstacle to obtaining a cure for HIV infection, as these cells can persist despite decades of treatment with antiretroviral therapy (ART). Estimates indicate that more than 70 years of continuous, fully suppressive ART are needed to eliminate the HIV reservoir1. Alternatively, induction of HIV from its latent state could accelerate the decrease in the reservoir, thus reducing the time to eradication. Previous attempts to reactivate latent HIV in preclinical animal models and in clinical trials have measured HIV induction in the peripheral blood with minimal focus on tissue reservoirs and have had limited effect2–9. Here we show that activation of the non-canonical NF-κB signalling pathway by AZD5582 results in the induction of HIV and SIV RNA expression in the blood and tissues of ART-suppressed bone-marrow–liver–thymus (BLT) humanized mice and rhesus macaques infected with HIV and SIV, respectively. Analysis of resting CD4+ T cells from tissues after AZD5582 treatment revealed increased SIV RNA expression in the lymph nodes of macaques and robust induction of HIV in almost all tissues analysed in humanized mice, including the lymph nodes, thymus, bone marrow, liver and lung. This promising approach to latency reversal—in combination with appropriate tools for systemic clearance of persistent HIV infection—greatly increases opportunities for HIV eradication.
Pheromones regulate social and reproductive behavior in most mammalian species. These effects are mediated by the vomeronasal and main olfactory systems. Effects of putative pheromones on human neuroendocrine activity, brain activity and attractiveness ratings suggest that humans may communicate via similar chemosignaling. Here we studied two samples of younger and older individuals, respectively, with respect to one nonsynonymous polymorphism in the gene encoding the human vomeronasal type-1 receptor 1, VN1R1, and one nonsynonymous polymorphism in the gene encoding the olfactory receptor OR7D4. Participants in both samples had self-reported their sociosexual behavior using the sociosexual orientation inventory, including questions regarding lifetime number of one-night stands, number of partners last year and expected number of partners the coming 5 years. In women, there was a significant association between the VN1R1 polymorphism and sociosexual behavior in both samples, driven specifically by the question regarding one-night stands. Our results support the hypothesis that human social interaction is modulated by communication via chemosignaling.
Reproductive success is widely used as a measure of fitness. However, offspring quantity may not reflect the genetic contribution to subsequent generations if there is nonrandom variation in offspring quality. Offspring quality is likely to be an important component of human fitness, and tradeoffs between offspring quantity and quality have been reported. As such, studies using offspring quantity as a proxy for fitness may yield erroneous projections of evolutionary change, for example if there is little or no genetic variance in number of grandoffspring or if its genetic variance is to some extent independent of the genetic variance in number of offspring. To address this, we performed a quantitative genetic analysis on the reproductive history of 16,268 Swedish twins born between 1915 and 1929 and their offspring. There was significant sex limitation in the sources of familial variation, but the magnitudes of the genetic and environmental effects were the same in males and females. We found significant genetic variation in number of offspring and grandoffspring (heritability = 24% and 16%, respectively), and genetic variation in the two variables completely overlapped - i.e., there was a perfect genetic correlation between number of offspring and grandoffspring. Shared environment played a smaller but significant role in number of offspring and grandoffspring; again, there was a perfect shared environmental correlation between the two variables. These findings support the use of lifetime reproductive success as a proxy for fitness in populations like the one used here, but we caution against generalizing this conclusion to other kinds of human societies.
Love is one of our most powerful emotions, inspiring some of the greatest art, literature and conquests of human history. Although aspects of love are surely unique to our species, human romantic relationships are displays of a mating system characterized by pair bonding, likely built on ancient foundational neural mechanisms governing individual recognition, social reward, territorial behaviour and maternal nurturing. Studies in monogamous prairie voles and mice have revealed precise neural mechanisms regulating processes essential for the pair bond. Here, we discuss current viewpoints on the biology underlying pair bond formation, its maintenance and associated behaviours from neural and evolutionary perspectives.
by
Johannes B. Goll;
Steven E. Bosinger;
Travis L. Jensen;
Hasse Walum;
Tyler Grimes;
Gregory K. Tharp;
Muktha S Natrajan;
Azra Blazevic;
Richard D. Head;
Casey E. Gelber;
Kristen J. Steenbergen;
Nirav B. Patel;
Patrick Sanz;
Nadine Rouphael;
Evan Anderson;
Mark Mulligan;
Daniel F. Hoft
In the published article, there was an error in the Figure 7 legend as published. The figure legend effect size values were incorrectly displayed as “>1.25, 51.5, 51.75, 52” instead of “>1.25, ≥1.5, ≥1.75, ≥2”. The corrected Figure 7 and its caption appear below. The authors apologize for this error and state that this does not change the scientific conclusions of the article in any way. The original article has been updated.
by
Johannes B. Goll;
Steven Bosinger;
Travis L. Jensen;
Hasse Walum;
Tyler Grimes;
Gregory K. Tharp;
Muktha S. Natrajan;
Azra Blazevic;
Richard D. Head;
Casey E. Gelber;
Kristen J. Steenbergen;
Nirav B. Patel;
Patrick Sanz;
Nadine Rouphael;
Evan Anderson;
Mark Mulligan;
Daniel F. Hoft
Introduction: Over the last decade, the field of systems vaccinology has emerged, in which high throughput transcriptomics and other omics assays are used to probe changes of the innate and adaptive immune system in response to vaccination. The goal of this study was to benchmark key technical and analytical parameters of RNA sequencing (RNA-seq) in the context of a multi-site, double-blind randomized vaccine clinical trial. Methods: We collected longitudinal peripheral blood mononuclear cell (PBMC) samples from 10 subjects before and after vaccination with a live attenuated Francisella tularensis vaccine and performed RNA-Seq at two different sites using aliquots from the same sample to generate two replicate datasets (5 time points for 50 samples each). We evaluated the impact of (i) filtering lowly-expressed genes, (ii) using external RNA controls, (iii) fold change and false discovery rate (FDR) filtering, (iv) read length, and (v) sequencing depth on differential expressed genes (DEGs) concordance between replicate datasets. Using synthetic mRNA spike-ins, we developed a method for empirically establishing minimal read-count thresholds for maintaining fold change accuracy on a per-experiment basis. We defined a reference PBMC transcriptome by pooling sequence data and established the impact of sequencing depth and gene filtering on transcriptome representation. Lastly, we modeled statistical power to detect DEGs for a range of sample sizes, effect sizes, and sequencing depths. Results and Discussion: Our results showed that (i) filtering lowly-expressed genes is recommended to improve fold-change accuracy and inter-site agreement, if possible guided by mRNA spike-ins (ii) read length did not have a major impact on DEG detection, (iii) applying fold-change cutoffs for DEG detection reduced inter-set agreement and should be used with caution, if at all, (iv) reduction in sequencing depth had a minimal impact on statistical power but reduced the identifiable fraction of the PBMC transcriptome, (v) after sample size, effect size (i.e. the magnitude of fold change) was the most important driver of statistical power to detect DEG. The results from this study provide RNA sequencing benchmarks and guidelines for planning future similar vaccine studies.
Oxytocin (OXT) and its receptor (OXTR) are encoded by OXT and OXTR, respectively. Variable methylation of these genes has been linked to variability in sociability and neuroendophenotypes. Here we examine whether OXTR or OXT methylation in blood predicts concentrations of OXT in cerebrospinal fluid (CSF) (n = 166) and social behavior (n = 207) in socially-housed female rhesus macaques. We report a similarity between human and rhesus CpG sites for OXT and OXTR and a putative negative association between methylation of two OXTR CpG units with aggressive behavior (both P = 0.003), though this finding does not survive the most stringent correction for multiple comparison testing. We did not detect a statistically significant association between methylation of any CpG sites and CSF OXT concentrations, either. Because none of the tested associations survived statistical corrections, if there is any relationship between blood-derived methylation of these genes and the behavioral and physiological outcomes measured here, the effect size is too small to be detected reliably with this sample size. These results do not support the hypothesis that blood methylation of OXT or OXTR is robustly associated with CSF OXT concentration or social behavior in rhesus. It is possible, though, that methylation of these loci in the brain or in cheek epithelia may be associated with central OXT release and behavior. Finally, we consider the limitations of this exploratory study in the context of statistical power.