Complete atrioventricular block (CAVB) is a life-threatening arrhythmia. A small animal model of chronic CAVB that properly reflects clinical indices of bradycardia would accelerate the understanding of disease progression and pathophysiology, and the development of therapeutic strategies. We sought to develop a surgical model of CAVB in adult rats, which could recapitulate structural remodeling and arrhythmogenicity expected in chronic CAVB. Upon right thoracotomy, we delivered electrosurgical energy subepicardially via a thin needle into the atrioventricular node (AVN) region of adult rats to create complete AV block. The chronic CAVB animals developed dilated and hypertrophied ventricles with preserved systolic functions due to compensatory hemodynamic remodeling. Ventricular tachyarrhythmias, which are difficult to induce in the healthy rodent heart, could be induced upon programmed electrical stimulation in chronic CAVB rats and worsened when combined with β-adrenergic stimulation. Focal somatic gene transfer of TBX18 to the left ventricular apex in the CAVB rats resulted in ectopic ventricular beats within days, achieving a de novo ventricular rate faster than the slow atrioventricular (AV) junctional escape rhythm observed in control CAVB animals. The model offers new opportunities to test therapeutic approaches to treat chronic and severe CAVB which have previously only been testable in large animal models.
Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes.
Many types of viral infections can involve the human cardiovascular, such as Coxsackievirus, parvovirus B19, adenovirus, influenza virus, human herpes virus, Epstein-Barr virus, cytomegalovirus, hepatitis C virus, human immunodeficiency virus (HIV) [1], and even severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), which is currently circulating worldwide [2]. Zika virus (ZIKV), a type of RNA virus belonging to the family Flaviviridae and genus Flavivirus, was declared a Public Health Emergency of International Concern in February 2016 by the World Health Organization due to the severe damage it causes to the nervous system. Recently, ZIKV was detected in heart tissue [3], but the pathophysiological processes of ZIKV causing cardiovascular implications are still unclear [4]. Here, we established a mouse model of ZIKV pathogenesis and found that ZIKV can directly infect cardiomyocytes, causing myocardial inflammation, myocarditis, and heart function impairment. Our findings provide evidence to understand the heart involvement in ZIKV-infected patients, which may be essential for protecting them from life-threatening complications.
Classically, basic cardiovascular research has been delimited to investigating one of the two architectural territories of the heart; the myocardium and the coronary vasculature. Technological advances continue to foster mechanistic insights on homeostatic physiology and pathophysiology of the heart. In parallel, translational efforts in gene therapy1 and stem cell biology2 have exploited newly-gained concepts toward creating disease-modifying activities in animal models and clinical trials. Together, these advances have blurred the structural boundaries between the myocardium and the circulation, and brought us to appreciate the key signaling pathways that are common to various domains of the heart as well as the fluidity of molecular signals that play opposing roles depending on the spatial and temporal context.
Cardiac pacemaker cells of the sinoatrial node initiate each and every heartbeat. Compared with our understanding of the constituents of their electrical excitation, little is known about the metabolic underpinnings that drive the automaticity of pacemaker myocytes. This lack is largely owing to the scarcity of native cardiac pacemaker myocytes. Here, we take advantage of induced pacemaker myocytes generated by TBX18-mediated reprogramming (TBX18-iPMs) to investigate comparative differences in the metabolic program between pacemaker myocytes and working cardiomyocytes. TBX18-iPMs were more resistant to metabolic stresses, exhibiting higher cell viability upon oxidative stress. TBX18-induced pacemaker myocytes (iPMs) expensed a lower degree of oxidative phosphorylation and displayed a smaller capacity for glycolysis compared with control ventricular myocytes. Furthermore, the mitochondria were smaller in TBX18-iPMs than in the control. We reasoned that a shift in the balance between mitochondrial fusion and fission was responsible for the smaller mitochondria observed in TBX18-iPMs. We identified a mitochondrial inner membrane fusion protein, Opa1, as one of the key mediators of this process and demonstrated that the suppression of Opa1 expression increases the rate of synchronous automaticity in TBX18-iPMs. Taken together, our data demonstrate that TBX18-iPMs exhibit a low metabolic demand that matches their mitochondrial morphology and ability to withstand metabolic insult.
Bradycardia arising from pacemaker dysfunction can be debilitating and life threatening. Electronic pacemakers serve as effective treatment options for pacemaker dysfunction. They however present their own limitations and complications. This has motivated research into discovering more effective and innovative ways to treat pacemaker dysfunction. Gene therapy is being explored for its potential to treat various cardiac conditions including cardiac arrhythmias. Gene transfer vectors with increasing transduction efficiency and biosafety have been developed and trialed for cardiovascular disease treatment. With an improved understanding of the molecular mechanisms driving pacemaker development, several gene therapy targets have been identified to generate the phenotypic changes required to correct pacemaker dysfunction. This review will discuss the gene therapy vectors in use today along with methods for their delivery. Furthermore, it will evaluate several gene therapy strategies attempting to restore biological pacing, having the potential to emerge as viable therapies for pacemaker dysfunction.
Commercially available health monitors rely on rigid electronic housing coupled with aggressive adhesives and conductive gels, causing discomfort and inducing skin damage. Also, research-level skin-wearable devices, while excelling in some aspects, fall short as concept-only presentations due to the fundamental challenges of active wireless communication and integration as a single device platform. Here, an all-in-one, wireless, stretchable hybrid electronics with key capabilities for real-time physiological monitoring, automatic detection of signal abnormality via deep-learning, and a long-range wireless connectivity (up to 15 m) is introduced. The strategic integration of thin-film electronic layers with hyperelastic elastomers allows the overall device to adhere and deform naturally with the human body while maintaining the functionalities of the on-board electronics. The stretchable electrodes with optimized structures for intimate skin contact are capable of generating clinical-grade electrocardiograms and accurate analysis of heart and respiratory rates while the motion sensor assesses physical activities. Implementation of convolutional neural networks for real-time physiological classifications demonstrates the feasibility of multifaceted analysis with a high clinical relevance. Finally, in vivo demonstrations with animals and human subjects in various scenarios reveal the versatility of the device as both a health monitor and a viable research tool.
Recent data indicates that DJ-1 plays a role in the cellular response to stress. Here, we aimed to examine the underlying molecular mechanisms mediating the actions of DJ-1 in the heart following myocardial ischemia-reperfusion (I/R) injury. In response to I/R injury, DJ-1 KO mice displayed increased areas of infarction and worsened left ventricular function when compared to WT mice, confirming a protective role for DJ-1 in the heart. In an effort to evaluate the potential mechanism(s) responsible for the increased injury in DJ-1 KO mice, we focused on SUMOylation, a post-translational modification process that regulates various aspects of protein function. DJ-1 KO hearts after I/R injury were found to display enhanced accumulation of SUMO-1 modified proteins and reduced SUMO-2/3 modified proteins. Further analysis, revealed that the protein expression of the de-SUMOylation enzyme SENP1 was reduced, whereas the expression of SENP5 was enhanced in DJ-1 KO hearts after I/R injury. Finally, DJ-1 KO hearts were found to display enhanced SUMO-1 modification of dynamin-related protein 1, excessive mitochondrial fission, and dysfunctional mitochondria. Our data demonstrates that the activation of DJ-1 in response to myocardial I/R injury protects the heart by regulating the SUMOylation status of Drp1 and attenuating excessive mitochondrial fission.
Each heartbeat that pumps blood throughout the body is initiated by an electrical impulse generated in the sinoatrial node (SAN). However, a number of disease conditions can hamper the ability of the SAN's pacemaker cells to generate consistent action potentials and maintain an orderly conduction path, leading to arrhythmias. For symptomatic patients, current treatments rely on implantation of an electronic pacing device. However, complications inherent to the indwelling hardware give pause to categorical use of device therapy for a subset of populations, including pediatric patients or those with temporary pacing needs. Cellular-based biological pacemakers, derived in vitro or in situ, could function as a therapeutic alternative to current electronic pacemakers. Understanding how biological pacemakers measure up to the SAN would facilitate defining and demonstrating its advantages over current treatments. In this review, we discuss recent approaches to creating biological pacemakers and delineate design criteria to guide future progress based on insights from basic biology of the SAN. We emphasize the need for long-term efficacy in vivo via maintenance of relevant proteins, source-sink balance, a niche reflective of the native SAN microenvironment, and chronotropic competence. With a focus on such criteria, combined with delivery methods tailored for disease indications, clinical implementation will be attainable.
Intracellular action potential signals reveal enriched physiological information. Patch clamp techniques have been widely used to measure intracellular potential. Despite their high signal fidelity, they suffer from low throughput. Recently, 3D nanoelectrodes have been developed for intracellular potential recording. However, they are limited by scalability, yield, and cost, directly constraining their use in monitoring large number of cells and high throughput applications. In this paper, we demonstrate intracellular potential monitoring of cardiomyocytes using simple 2D planar electrode array in a standard CMOS process without patch clamps or post fabricated 3D nanoelectrodes. This is enabled by our unique cardiomyocytes/fibroblasts co-culturing technique and electroporation. The co-cultured fibroblasts promote tight sealing of cardiomyocytes on electrodes and enable high-fidelity intracellular potential monitoring based on 2D planar electrode. Compared to existing technologies, our platform has a unique potential to achieve an unprecedented combination of throughput, spatiotemporal resolution, and a tissue-level field-of-view for cellular electrophysiology monitoring.