Charcot joint disease is a condition of degradation in bones and joints that is severely debilitating to the foot and ankle structure and function. The breakdown in bony architecture causes predictable foot ulcers, such as at the plantar aspect of the fifth or first metatarsal heads. These ulcers may progress to osteomyelitis, which combined with loss of foot structure, makes below-knee amputation an option, albeit a suboptimal one. The goal of rearfoot reconstruction, therefore, is to rebuild the architecture of the foot so it may once again proceed through the gait cycle with low risk of osteomyelitis.
Background
Diabetes is the leading cause of lower extremity nontraumatic amputation globally, and diabetic foot osteomyelitis (DFO) is usually the terminal event before limb loss. Although guidelines recommend percutaneous bone biopsy (PBB) for microbiological diagnosis of DFO in several common scenarios, it is unclear how frequently PBBs yield positive cultures and whether they cause harm or improve outcomes.
Methods
We searched the PubMed, EMBASE, and Cochrane Trials databases for articles in any language published up to December 31, 2019, reporting the frequency of culture-positive PBBs. We calculated the pooled proportion of culture-positive PBBs using a random-effects meta-analysis model and reported on PBB-related adverse events, DFO outcomes, and antibiotic adjustment based on PBB culture results where available.
Results
Among 861 articles, 11 studies met inclusion criteria and included 780 patients with 837 PBBs. Mean age ranged between 56.6 and 71.0 years old. The proportion of males ranged from 62% to 86%. All studies were longitudinal observational cohorts, and 10 were from Europe. The range of culture-positive PBBs was 56%–99%, and the pooled proportion of PBBs with a positive culture was 84% (95% confidence interval, 73%–91%). There was heterogeneity between studies and no consistency in definitions used to define adverse events. Impact of PBB on DFO outcomes or antibiotic management were seldom reported.
Conclusions
This meta-analysis suggests PBBs have a high yield of culture-positive results. However, this is an understudied topic, especially in low- and middle-income countries, and the current literature provides very limited data regarding procedure safety and impact on clinical outcomes or antibiotic management.
Intermetatarsal neuromas, known by their eponym as Morton’s neuromas, are a common painful forefoot pathology seen in the foot and ankle clinic. The nomenclature of this condition is misleading. The term “neuroma” refers to a non-degenerative nerve injury. The condition clinicians most often describe in a “Morton’s neuroma” is more accurately described as a perineural fibrosis of the plantar interdigital nerve leading to entrapment of this nerve [1]. Surgical treatment varies from entrapment release to full neurectomy [2]. Post-operative pathology review of neurectomized tissue rarely demonstrates axonal degeneration and collagen proliferation [3]. Those changes are the pathophysiological markers associated with nerve injury that lead to true neuroma formation. The authors, therefore, recommend changing the common name of the condition from “intermetatarsal neuroma” to interdigital nerve entrapment to better define the disease. The aim of this review is to present treatment schemes seen in “Morton’s” diagnosis, and to suggest an algorithm which may improve patient outcome.
Diabetic foot and ankle reconstruction is a difficult area of surgery in which to achieve ideal outcomes. The goal for a majority of cases in this surgical field is to achieve a plantigrade foot that can function throughout the gait cycle in shoes with or without a brace. There are multiple biomechanical, biochemical, neurological, vascular, infectious, and social factors that can influence the likelihood of achieving those goals. The effect of the Achilles’ tendon on the gait cycle, through its effects on joint function, is the greatest determinant of non-rigid deformity in diabetic feet. In order to improve the chance of a desired outcome, the Achilles tendon should be assessed for any possible pathologies. For many patients, the addition of the simple technique of a percutaneous Achilles’ tendon release to a surgical case is powerful enough to address multiple biomechanical issues and prevent below-knee amputations.