Despite extensive efforts, the principal sites of productive HIV-1 entry in different target cells—plasma membrane (PM) vs endosomes—remain controversial. To delineate the site(s) of HIV-1 fusion, we implemented a triple labeling approach that involves tagging pseudoviruses with the fluid-phase viral content marker, iCherry, the viral membrane marker, DiD, and the extraviral pH sensor, ecliptic pHluorin. The viral content marker iCherry is released into the cytoplasm upon virus–cell fusion irrespective of the sites of fusion. In contrast, the extent of dilution of the membrane marker upon fusion with the PM (loss of signal) vs the endosomal membrane (no change in punctate DiD appearance) discriminates between the principal sites of viral fusion. Additionally, ecliptic pHluorin incorporated into the viral membrane reports whether virus fusion occurs in acidic endosomes. Real-time single virus imaging in living HeLa-derived cells, a CD4+ T-cell line, and activated primary human CD4+ T-cells revealed a strong (80–90%) HIV-1 preference for fusion with endosomes. Intriguingly, we observed HIV-1 fusion only with pH-neutral intracellular vesicles and never with acidified endosomes. These endocytic fusion events are likely culminating in productive infection since endocytic inhibitors, such as EIPA, Pitstop2, and Dynasore, as well as a dominant-negative dynamin-2 mutant, inhibited HIV-1 infection in HeLa-derived and primary CD4+ T-cells. Furthermore, the inhibition of endocytosis in HeLa-derived cells promoted hemifusion at the PM but abrogated complete fusion. Collectively, these data reveal that the primary HIV-1 entry pathway in diverse cell types is through fusion with pH-neutral intracellular vesicles.
HIV-1 capsid (CA) stability is important for viral replication. E45A and P38A mutations enhance and reduce core stability, thus impairing infectivity. Second-site mutations R132T and T216I rescue infectivity. Capsid lattice stability was studied by solving seven crystal structures (in native background), including P38A, P38A/T216I, E45A, E45A/R132T CA, using molecular dynamics simulations of lattices, cryo-electron microscopy of assemblies, time-resolved imaging of uncoating, biophysical and biochemical characterization of assembly and stability. We report pronounced and subtle, short- and long-range rearrangements: (1) A38 destabilized hexamers by loosening interactions between flanking CA protomers in P38A but not P38A/T216I structures. (2) Two E45A structures showed unexpected stabilizing CANTD-CANTD inter-hexamer interactions, variable R18-ring pore sizes, and flipped N-terminal β-hairpin. (3) Altered conformations of E45Aa α9-helices compared to WT, E45A/R132T, WTPF74, WTNup153, and WTCPSF6 decreased PF74, CPSF6, and Nup153 binding, and was reversed in E45A/R132T. (4) An environmentally sensitive electrostatic repulsion between E45 and D51 affected lattice stability, flexibility, ion and water permeabilities, electrostatics, and recognition of host factors.
Many enveloped viruses enter host cells by fusing with acidic endosomes. The fusion activity of multiple viral envelope glycoproteins does not generally affect viral membrane permeability. However, fusion induced by the Lassa virus (LASV) glycoprotein complex (GPc) is always preceded by an increase in viral membrane permeability and the ensuing acidification of the virion interior. Here, systematic investigation of this LASV fusion phenotype using single pseudovirus tracking in live cells reveals that the change in membrane barrier function is associated with the fusogenic conformational reorganization of GPc. We show that a small-molecule fusion inhibitor or mutations that impair viral fusion by interfering with GPc refolding into the post-fusion structure prevent the increase in membrane permeability. We find that the increase in virion membrane permeability occurs early during endosomal maturation and is facilitated by virus-cell contact. This increase is observed using diverse arenavirus glycoproteins, whether presented on lentivirus-based pseudoviruses or arenavirus-like particles, and in multiple different cell types. Collectively, these results suggest that conformational changes in GPc triggered by low pH and cell factor binding are responsible for virion membrane permeabilization and acidification of the virion core prior to fusion. We propose that this viroporin-like activity may augment viral fusion and/or post-fusion steps of infection, including ribonucleoprotein release into the cytoplasm.
HIV-1 fusion leading to productive entry has long been thought to occur at the plasma membrane. However, our previous single virus imaging data imply that, after Env engagement of CD4 and coreceptors at the cell surface, the virus enters into and fuses with intracellular compartments. We were unable to reliably detect viral fusion at the plasma membrane. Here, we implement a novel virus labeling strategy that biases towards detection of virus fusion that occurs in a pH-neutral environment - at the plasma membrane or, possibly, in early pH-neutral vesicles. Virus particles are co-labeled with an intra-viral content marker, which is released upon fusion, and an extra-viral pH sensor consisting of ecliptic pHluorin fused to the transmembrane domain of ICAM-1. This sensor fully quenches upon virus trafficking to a mildly acidic compartment, thus precluding subsequent detection of viral content release. As an interesting secondary observation, the incorporation of the pH-sensor revealed that HIV-1 particles occasionally shuttle between neutral and acidic compartments in target cells expressing CD4, suggesting a small fraction of viral particles is recycled to the plasma membrane and re-internalized. By imaging viruses bound to living cells, we found that HIV-1 content release in neutral-pH environment was a rare event (∼0.4% particles). Surprisingly, viral content release was not significantly reduced by fusion inhibitors, implying that content release was due to spontaneous formation of viral membrane defects occurring at the cell surface.We did not measure a significant occurrence of HIV-1 fusion at neutral pH above this defect-mediated background loss of content, suggesting that the pH sensor may destabilize the membrane of the HIV-1 pseudovirus and, thus, preclude reliable detection of single virus fusion events at neutral pH.
A recent Journal of Virology article by Herold and colleagues (1) addresses the controversial issue of the HIV-1 entry pathways. Two lines of evidence led the authors to conclude that internalized viruses do not contribute to productive HIV-1 entry into lymphoid cells. First, a dominant-negative dynamin mutant blocked HIV-1 uptake but not fusion. Second, preincubation at 22°C allowed virus endocytosis while preventing fusion/infection. Subsequent fusion induced by raising the temperature could be fully blocked by membrane-impermeable peptide inhibitor T20, demonstrating that productive endocytosis did not occur at 22°C. The latter result fully agrees with our data showing that HIV-1 engages CD4 and coreceptors on the cell surface upon incubation at reduced temperatures (2, 3). However, we interpreted the subsequent fusion induced by shifting to 37°C as synchronized endocytosis followed by fusion with endosomes, since the virus escape from the low-temperature block was delayed compared to escape from a T20-like peptide (2).
Correlative light and electron microscopy (CLEM) combines spatiotemporal information from fluorescence light microscopy (fLM) with high-resolution structural data from cryo-electron tomography (cryo-ET). These technologies provide opportunities to bridge knowledge gaps between cell and structural biology. Here we describe our protocol for correlated cryo-fLM, cryo-electron microscopy (cryo-EM), and cryo-ET (i.e., cryo-CLEM) of virus-infected or transfected mammalian cells. Mammalian-derived cells are cultured on EM substrates, using optimized conditions that ensure that the cells are spread thinly across the substrate and are not physically disrupted. The cells are then screened by fLM and vitrified before acquisition of cryo-fLM and cryo-ET images, which is followed by data processing. A complete session from grid preparation through data collection and processing takes 5-15 d for an individual experienced in cryo-EM.
BACKGROUND: HIV-1 Vpr is recruited into virions during assembly and appears to remain associated with the viral core after the reverse transcription and uncoating steps of entry. This feature has prompted the use of fluorescently labeled Vpr to visualize viral particles and to follow trafficking of post-fusion HIV-1 cores in the cytoplasm. RESULTS: Here, we tracked single pseudovirus entry and fusion and observed that fluorescently tagged Vpr gradually dissociates from post-fusion viral cores over the course of several minutes and accumulates in the nucleus. Kinetics measurements showed that fluorescent Vpr released from the cores very rapidly entered the cell nucleus. More than 10,000 Vpr molecules can be delivered into the cell nucleus within 45 min of infection by HIV-1 particles pseudotyped with the avian sarcoma and leukosis virus envelope glycoprotein. The fraction of Vpr from cell-bound viruses that accumulated in the nucleus was proportional to the extent of virus-cell fusion and was fully blocked by viral fusion inhibitors. Entry of virus-derived Vpr into the nucleus occurred independently of envelope glycoproteins or target cells. Fluorescence correlation spectroscopy revealed two forms of nuclear Vpr-monomers and very large complexes, likely involving host factors. The kinetics of viral Vpr entering the nucleus after fusion was not affected by point mutations in the capsid protein that alter the stability of the viral core. CONCLUSIONS: The independence of Vpr shedding of capsid stability and its relatively rapid dissociation from post-fusion cores suggest that this process may precede capsid uncoating, which appears to occur on a slower time scale. Our results thus demonstrate that a bulk of fluorescently labeled Vpr incorporated into HIV-1 particles is released shortly after fusion. Future studies will address the question whether the quick and efficient nuclear delivery of Vpr derived from incoming viruses can regulate subsequent steps of HIV-1 infection.
Licensee MDPI, Basel, Switzerland. The HIV-1 entry pathway into permissive cells has been a subject of debate. Accumulating evidence, including our previous single virus tracking results, suggests that HIV-1 can enter different cell types via endocytosis and CD4/coreceptor-dependent fusion with endosomes. However, recent studies that employed indirect techniques to infer the sites of HIV-1 entry into CD4+ T cells have concluded that endocytosis does not contribute to infection. To assess whether HIV-1 enters these cells via endocytosis, we probed the role of intracellular trafficking in HIV-1 entry/fusion by a targeted shRNA screen in a CD4+ T cell line. We performed a screen utilizing a direct virus-cell fusion assay as readout and identified several host proteins involved in endosomal trafficking/maturation, including Rab5A and sorting nexins, as factors regulating HIV-1 fusion and infection. Knockdown of these proteins inhibited HIV-1 fusion irrespective of coreceptor tropism, without altering the CD4 or coreceptor expression, or compromising the virus’ ability to mediate fusion of two adjacent cells initiated by virus-plasma membrane fusion. Ectopic expression of Rab5A in non-permissive cells harboring Rab5A shRNAs partially restored the HIV-cell fusion. Together, these results implicate endocytic machinery in productive HIV-1 entry into CD4+ T cells.
by
Elena Zaitseva;
Eugene Zaitsev;
Kamran Melikov;
Anush Arakelyan;
Mariana Marin;
Rafael Villasmil;
Leonid B. Margolis;
Gregory Melikian;
Leonid V. Chernomordik
HIV-1 entry into host cells starts with interactions between the viral envelope glycoprotein (Env) and cellular CD4 receptors and coreceptors. Previous work has suggested that efficient HIV entry also depends on intracellular signaling, but this remains controversial. Here we report that formation of the pre-fusion Env-CD4-coreceptor complexes triggers non-apoptotic cell surface exposure of the membrane lipid phosphatidylserine (PS). HIV-1-induced PS redistribution depends on Ca2+signaling triggered by Env-coreceptor interactions and involves the lipid scramblase TMEM16F. Externalized PS strongly promotes Env-mediated membrane fusion and HIV-1 infection. Blocking externalized PS or suppressing TMEM16F inhibited Env-mediated fusion. Exogenously added PS promoted fusion, with fusion dependence on PS being especially strong for cells with low surface density of coreceptors. These findings suggest that cell-surface PS acts as an important cofactor that promotes the fusogenic restructuring of pre-fusion complexes and likely focuses the infection on cells conducive to PS signaling. Zaitseva et al. show that HIV binding to target cells induces signaling that leads to exposure of phosphatidylserine on the cell surface. Interaction between the viral envelope glycoprotein and phosphatidylserine facilitates receptor-dependent merger of viral and cell membranes and infection. Phosphatidylserine dependence may focus infection on cells of certain activation status.
Disassembly of the cone-shaped HIV-1 capsid in target cells is a prerequisite for establishing a life-long infection. This step in HIV-1 entry, referred to as uncoating, is critical yet poorly understood. Here we report a novel strategy to visualize HIV-1 uncoating using a fluorescently tagged oligomeric form of a capsid-binding host protein cyclophilin A (CypA-DsRed), which is specifically packaged into virions through the high-avidity binding to capsid (CA). Single virus imaging reveals that CypA-DsRed remains associated with cores after permeabilization/removal of the viral membrane and that CypA-DsRed and CA are lost concomitantly from the cores in vitro and in living cells. The rate of loss is modulated by the core stability and is accelerated upon the initiation of reverse transcription. We show that the majority of single cores lose CypA-DsRed shortly after viral fusion, while a small fraction remains intact for several hours. Single particle tracking at late times post-infection reveals a gradual loss of CypA-DsRed which is dependent on reverse transcription. Uncoating occurs both in the cytoplasm and at the nuclear membrane. Our novel imaging assay thus enables time-resolved visualization of single HIV-1 uncoating in living cells, and reveals the previously unappreciated spatio-temporal features of this incompletely understood process.