Sacred values, such as those associated with religious or ethnic identity, underlie many important individual and group decisions in life, and individuals typically resist attempts to trade off their sacred values in exchange for material benefits. Deontological theory suggests that sacred values are processed based on rights and wrongs irrespective of outcomes, while utilitarian theory suggests that they are processed based on costs and benefits of potential outcomes, but which mode of processing an individual naturally uses is unknown. The study of decisions over sacred values is difficult because outcomes cannot typically be realized in a laboratory, and hence little is known about the neural representation and processing of sacred values. We used an experimental paradigm that used integrity as a proxy for sacredness and which paid real money to induce individuals to sell their personal values. Using functional magnetic resonance imaging (fMRI), we found that values that people refused to sell (sacred values) were associated with increased activity in the left temporoparietal junction and ventrolateral prefrontal cortex, regions previously associated with semantic rule retrieval. This suggests that sacred values affect behaviour through the retrieval and processing of deontic rules and not through a utilitarian evaluation of costs and benefits.
We investigated behavioral and neurobiological mechanisms by which risk-averse advice, provided by an expert, affected risky decisions across three developmental groups [early adolescents (12–14 years), late adolescents (15–17 years), adults (18+ years)]. Using cumulative prospect theory, we modeled choice behavior during a risky-choice task. Results indicate that advice had a significantly greater impact on risky choice in both adolescent groups than in adults. Using functional magnetic resonance imaging, we investigated the neural correlates of this behavioral effect. Developmental effects on correlations between brain activity and valuation parameters were obtained in regions that can be classified into (i) cognitive control regions, such as dorsolateral prefrontal cortex (DLPFC) and ventrolateral PFC; (ii) social cognition regions, such as posterior temporoparietal junction; and (iii) reward-related regions, such as ventromedial PFC (vmPFC) and ventral striatum. Within these regions, differential effects of advice on neural correlates of valuation were observed across development. Specifically, advice increased the correlation strength between brain activity and parameters reflective of safe choice options in adolescent DLPFC and decreased correlation strength between activity and parameters reflective of risky choice options in adult vmPFC. Taken together, results indicate that, across development, distinct brain systems involved in cognitive control and valuation mediate the risk-reducing effect of advice during decision making under risk via specific enhancements and reductions of the correlation strength between brain activity and valuation parameters.
Dogs are hypersocial with humans, and their integration into human social ecology makes dogs a unique model for studying cross-species social bonding. However, the proximal neural mechanisms driving dog-human social interaction are unknown. We used functional magnetic resonance imaging in 15 awake dogs to probe the neural basis for their preferences for social interaction and food reward. In a first experiment, we used the ventral caudate as a measure of intrinsic reward value and compared activation to conditioned stimuli that predicted food, praise or nothing. Relative to the control stimulus, the caudate was significantly more active to the reward-predicting stimuli and showed roughly equal or greater activation to praise vs food in 13 of 15 dogs. To confirm that these differences were driven by the intrinsic value of social praise, we performed a second imaging experiment in which the praise was withheld on a subset of trials. The difference in caudate activation to the receipt of praise, relative to its withholding, was strongly correlated with the differential activation to the conditioned stimuli in the first experiment. In a third experiment, we performed an out-of-scanner choice task in which the dog repeatedly selected food or owner in a Y-maze. The relative caudate activation to food- and praise-predicting stimuli in Experiment 1 was a strong predictor of each dog's sequence of choices in the Y-maze. Analogous to similar neuroimaging studies of individual differences in human social reward, our findings demonstrate a neural mechanism for preference in domestic dogs that is stable within, but variable between, individuals. Moreover, the individual differences in the caudate responses indicate the potentially higher value of social than food reward for some dogs and may help to explain the apparent efficacy of social interaction in dog training.
Understanding dogs' perceptual experience of both conspecifics and humans is important to understand how dogs evolved and the nature of their relationships with humans and other dogs. Olfaction is believed to be dogs' most powerful and perhaps important sense and an obvious place to begin for the study of social cognition of conspecifics and humans. We used fMRI in a cohort of dogs (N=12) that had been trained to remain motionless while unsedated and unrestrained in the MRI. By presenting scents from humans and conspecifics, we aimed to identify the dimensions of dogs' responses to salient biological odors - whether they are based on species (dog or human), familiarity, or a specific combination of factors. We focused our analysis on the dog's caudate nucleus because of its well-known association with positive expectations and because of its clearly defined anatomical location. We hypothesized that if dogs' primary association to reward, whether it is based on food or social bonds, is to humans, then the human scents would activate the caudate more than the conspecific scents. Conversely, if the smell of conspecifics activated the caudate more than the smell of humans, dogs' association to reward would be stronger to their fellow canines. Five scents were presented (self, familiar human, strange human, familiar dog, strange dog). While the olfactory bulb/peduncle was activated to a similar degree by all the scents, the caudate was activated maximally to the familiar human. Importantly, the scent of the familiar human was not the handler, meaning that the caudate response differentiated the scent in the absence of the person being present. The caudate activation suggested that not only did the dogs discriminate that scent from the others, they had a positive association with it. This speaks to the power of the dog's sense of smell, and it provides important clues about the importance of humans in dogs' lives.This article is part of a Special Issue entitled: Canine Behavior.
Recent behavioral evidence suggests that dogs, like humans and monkeys, are capable of visual face recognition. But do dogs also exhibit specialized cortical face regions similar to humans and monkeys? Using functional magnetic resonance imaging (fMRI) in six dogs trained to remain motionless during scanning without restraint or sedation, we found a region in the canine temporal lobe that responded significantly more to movies of human faces than to movies of everyday objects. Next, using a new stimulus set to investigate face selectivity in this predefined candidate dog face area, we found that this region responded similarly to images of human faces and dog faces, yet significantly more to both human and dog faces than to images of objects. Such face selectivity was not found in dog primary visual cortex. Taken together, these findings: (1) provide the first evidence for a face-selective region in the temporal cortex of dogs, which cannot be explained by simple low-level visual feature extraction; (2) reveal that neural machinery dedicated to face processing is not unique to primates; and (3) may help explain dogs’ exquisite sensitivity to human social cues.
Having previously used functional MRI to map the response to a reward signal in the ventral caudate in awake unrestrained dogs, here we examined the importance of signal source to canine caudate activation. Hand signals representing either incipient reward or no reward were presented by a familiar human (each dog’s respective handler), an unfamiliar human, and via illustrated images of hands on a computer screen to 13 dogs undergoing voluntary fMRI. All dogs had received extensive training with the reward and no-reward signals from their handlers and with the computer images and had minimal exposure to the signals from strangers. All dogs showed differentially higher BOLD response in the ventral caudate to the reward versus no reward signals, and there was a robust effect at the group level. Further, differential response to the signal source had a highly significant interaction with a dog’s general aggressivity as measured by the C-BARQ canine personality assessment. Dogs with greater aggressivity showed a higher differential response to the reward signal versus no-reward signal presented by the unfamiliar human and computer, while dogs with lower aggressivity showed a higher differential response to the reward signal versus no-reward signal from their handler. This suggests that specific facets of canine temperament bear more strongly on the perceived reward value of relevant communication signals than does reinforcement history, as each of the dogs were reinforced similarly for each signal, regardless of the source (familiar human, unfamiliar human, or computer). A group-level psychophysiological interaction (PPI) connectivity analysis showed increased functional coupling between the caudate and a region of cortex associated with visual discrimination and learning on reward versus no-reward trials. Our findings emphasize the sensitivity of the domestic dog to human social interaction, and may have other implications and applications pertinent to the training and assessment of working and pet dogs.
Our personal values are subject to forces of social influence. Deontological resolve captures how strongly one relies on absolute rules of right and wrong in the representation of one's personal values and may predict willingness to modify one's values in the presence of social influence. Using fMRI, we found that a neurobiological metric for deontological resolve based on relative activity in the ventrolateral prefrontal cortex (VLPFC) during the passive processing of sacred values predicted individual differences in conformity. Individuals with stronger deontological resolve, as measured by greater VLPFC activity, displayed lower levels of conformity. We also tested whether responsiveness to social reward, as measured by ventral striatal activity during social feedback, predicted variability in conformist behavior across individuals but found no significant relationship. From these results we conclude that unwillingness to conform to others' values is associated with a strong neurobiological representation of social rules.
The brains of odontocetes (toothed whales) look grossly different from their terrestrial relatives. Because of their adaptation to the aquatic environment and their reliance on echolocation, the odontocetes' auditory system is both unique and crucial to their survival. Yet, scant data exist about the functional organization of the cetacean auditory system. A predominant hypothesis is that the primary auditory cortex lies in the suprasylvian gyrus along the vertex of the hemispheres, with this position induced by expansion of ‘associative′ regions in lateral and caudal directions. However, the precise location of the auditory cortex and its connections are still unknown. Here, we used a novel diffusion tensor imaging (DTI) sequence in archival post-mortem brains of a common dolphin (Delphinus delphis) and a pantropical dolphin (Stenella attenuata) to map their sensory and motor systems. Using thalamic parcellation based on traditionally defined regions for the primary visual (V1) and auditory cortex (A1), we found distinct regions of the thalamus connected to V1 and A1. But in addition to suprasylvian-A1, we report here, for the first time, the auditory cortex also exists in the temporal lobe, in a region near cetacean-A2 and possibly analogous to the primary auditory cortex in related terrestrial mammals (Artiodactyla). Using probabilistic tract tracing, we found a direct pathway from the inferior colliculus to the medial geniculate nucleus to the temporal lobe near the sylvian fissure. Our results demonstrate the feasibility of post-mortem DTI in archival specimens to answer basic questions in comparative neurobiology in a way that has not previously been possible and shows a link between the cetacean auditory system and those of terrestrial mammals. Given that fresh cetacean specimens are relatively rare, the ability to measure connectivity in archival specimens opens up a plethora of possibilities for investigating neuroanatomy in cetaceans and other species.
The approximate number system (ANS), which supports the rapid estimation of quantity, emerges early in human development and is widespread across species. Neural evidence from both human and non-human primates suggests the parietal cortex as a primary locus of numerical estimation, but it is unclear whether the numerical competencies observed across non-primate species are subserved by similar neural mechanisms. Moreover, because studies with non-human animals typically involve extensive training, little is known about the spontaneous numerical capacities of non-human animals. To address these questions, we examined the neural underpinnings of number perception using awake canine functional magnetic resonance imaging. Dogs passively viewed dot arrays that varied in ratio and, critically, received no task-relevant training or exposure prior to testing. We found evidence of ratio-dependent activation, which is a key feature of the ANS, in canine parietotemporal cortex in the majority of dogs tested. This finding is suggestive of a neural mechanism for quantity perception that has been conserved across mammalian evolution.