Quantitative oblique back-illumination microscopy (qOBM) is an emerging label-free optical imaging technology that enables 3D, tomographic quantitative phase imaging (QPI) with epi-illumination in thick scattering samples. In this work, we present a robust optimization of a flexible, fiber-optic-based qOBM system. Our approach enables in silico optimization of the phase signal-to-noise-ratio over a wide parameter space and obviates the need for tedious experimental optimization which could easily miss optimal conditions. Experimental validations of the simulations are also presented and sensitivity limits for the probe are assessed. The optimized probe is light-weight (∼40g) and compact (8mm in diameter) and achieves a 2µm lateral resolution, 6µm axial resolution, and a 300µm field of view, with near video-rate operation (10Hz, limited by the camera). The phase sensitivity is <20nm for a single qOBM acquisition (at 10Hz) and a lower limit of ∼3 nm via multi-frame averaging. Finally, to demonstrate the utility of the optimized probe, we image (1) thick, fixed rat brain samples from a 9L gliosarcoma tumor model and (2) freshly excised human brain tissues from neurosurgery. Acquired qOBM images using the flexible fiber-optic probe are in excellent agreement with those from a free-space qOBM system (both in-situ), as well as with gold-standard histopathology slices (after tissue processing).
Deep-ultraviolet (UV) microscopy enables label-free, high-resolution, quantitative molecular imaging and enables unique applications in biomedicine, including the potential for fast hematological analysis at the point-of-care. UV microscopy has been shown to quantify hemoglobin content and white blood cells (five-part differential), providing a simple alternative to the current gold standard, the hematological analyzer. Previously, however, the UV system comprised a bulky broadband laser-driven plasma light source along with a large and expensive camera and 3D translation stage. Here, we present a modified deep-UV microscope system with a compact footprint and low-cost components. We detail the novel design with simple, inexpensive optics and hardware to enable fast and accurate automated imaging. We characterize the system, including a modified low-cost web-camera and custom automated 3D translation stage, and demonstrate its ability to scan and capture large area images. We further demonstrate the capability of the system by imaging and analyzing blood smears, using previously trained networks for automatic segmentation, classification (including 5-part white blood cell differential), and colorization. The developed system is approximately 10 times less expensive than previous configurations and can serve as a point-of-care hematology analyzer, as well as be applied broadly in biomedicine as a simple compact, low-cost, quantitative molecular imaging system.
Neutropenia is a condition identified by an abnormally low number of neutrophils in the bloodstream and signifies an increased risk of severe infection. Cancer patients are particularly susceptible to this condition, which can be disruptive to their treatment and even life-threatening in severe cases. Thus, it is critical to routinely monitor neutrophil counts in cancer patients. However, the standard of care to assess neutropenia, the complete blood count (CBC), requires expensive and complex equipment, as well as cumbersome procedures, which precludes easy or timely access to critical hematological information, namely neutrophil counts. Here we present a simple, low-cost, fast, and robust technique to detect and grade neutropenia based on label-free multi-spectral deep-UV microscopy. Results show that the developed framework for automated segmentation and classification of live, unstained blood cells in a smear accurately differentiates patients with moderate and severe neutropenia from healthy samples in minutes. This work has significant implications towards the development of a low-cost and easy-to-use point-of-care device for tracking neutrophil counts, which can not only improve the quality of life and treatment-outcomes of many patients but can also be lifesaving.
SIGNIFICANCE: The morphological properties and hemoglobin (Hb) content of red blood cells (RBCs) are essential biomarkers to diagnose or monitor various types of hematological disorders. Label-free mass mapping approaches enable accurate Hb quantification from individual cells, serving as promising alternatives to conventional hematology analyzers. Deep ultraviolet (UV) microscopy is one such technique that allows high-resolution, molecular imaging, and absorption-based mass mapping. AIM: To compare UV absorption-based mass mapping at four UV wavelengths and understand variations across wavelengths and any assumptions necessary for accurate Hb quantification. APPROACH: Whole blood smears are imaged with a multispectral UV microscopy system, and the RBCs' dry masses are computed. This approach is compared to quantitative phase imaging-based mass mapping using data from an interferometric UV imaging system. RESULTS: Consistent Hb mass and mean corpuscular Hb values are obtained at all wavelengths, with the precision of the single-cell mass measurements being nearly identical at 220, 260, and 280 nm but slightly lower at 300 nm. CONCLUSIONS: A full hematological analysis (including white blood cell identification and characterization, and Hb quantification) may be achieved using a single UV illumination wavelength, thereby improving the speed and cost-effectiveness.
Significance: In neurosurgery, it is essential to differentiate between tumor and healthy brain regions to maximize tumor resection while minimizing damage to vital healthy brain tissue. However, conventional intraoperative imaging tools used to guide neurosurgery are often unable to distinguish tumor margins, particularly in infiltrative tumor regions and low-grade gliomas. Aim: The aim of this work is to assess the feasibility of a label-free molecular imaging tool called stimulated Raman scattering-spectroscopic optical coherence tomography (SRS-SOCT) to differentiate between healthy brain tissue and tumor based on (1) structural biomarkers derived from the decay rate of signals as a function of depth and (2) molecular biomarkers based on relative differences in lipid and protein composition extracted from the SRS signals. Approach: SRS-SOCT combines the molecular sensitivity of SRS (based on vibrational spectroscopy) with the spatial and spectral multiplexing capabilities of SOCT to enable fast, spatially and spectrally resolved molecular imaging. SRS-SOCT is applied to image a 9L gliosarcoma rat tumor model, a well-characterized model that recapitulates human high-grade gliomas, including high proliferative capability, high vascularization, and infiltration at the margin. Structural and biochemical signatures acquired from SRS-SOCT are extracted to identify healthy and tumor tissues. Results: Data show that SRS-SOCT provides light-scattering-based signatures that correlate with the presence of tumors, similar to conventional OCT. Further, nonlinear phase changes from the SRS interaction, as measured with SRS-SOCT, provide an additional measure to clearly separate tumor tissue from healthy brain regions. We also show that the nonlinear phase signals in SRS-SOCT provide a signal-to-noise advantage over the nonlinear amplitude signals for identifying tumors. Conclusions: SRS-SOCT can distinguish both spatial and spectral features that identify tumor regions in the 9L gliosarcoma rat model. This tool provides fast, label-free, nondestructive, and spatially resolved molecular information that, with future development, can potentially assist in identifying tumor margins in neurosurgery.
Significance: Quantitative oblique back-illumination microscopy (qOBM) is a recently developed label-free imaging technique that enables 3D quantitative phase imaging of thick scattering samples with epi-illumination. Here, we propose dynamic qOBM to achieve functional imaging based on subcellular dynamics, potentially indicative of metabolic activity. We show the potential utility of this novel technique by imaging adherent mesenchymal stromal cells (MSCs) grown in bioreactors, which can help address important unmet needs in cell manufacturing for therapeutics. Aim: We aim to develop dynamic qOBM and demonstrate its potential for functional imaging based on cellular and subcellular dynamics. Approach: To obtain functional images with dynamic qOBM, a sample is imaged over a period of time and its temporal signals are analyzed. The dynamic signals display an exponential frequency response that can be analyzed with phasor analysis. Functional images of the dynamic signatures are obtained by mapping the frequency dynamic response to phasor space and color-coding clustered signals. Results: Functional imaging with dynamic qOBM provides unique information related to subcellular activity. The functional qOBM images of MSCs not only improve conspicuity of cells in complex environments (e.g., porous micro-carriers) but also reveal two distinct cell populations with different dynamic behavior. Conclusions: In this work we present a label-free, fast, and scalable functional imaging approach to study and intuitively display cellular and subcellular dynamics. We further show the potential utility of this novel technique to help monitor adherent MSCs grown in bioreactors, which can help achieve quality-by-design of cell products, a significant unmet need in the field of cell therapeutics. This approach also has great potential for dynamic studies of other thick samples, such as organoids.
Identifying prostate cancer patients that are harboring aggressive forms of prostate cancer remains a significant clinical challenge. Here we develop an approach based on multispectral deep-ultraviolet (UV) microscopy that provides novel quantitative insight into the aggressiveness and grade of this disease, thus providing a new tool to help address this important challenge. We find that UV spectral signatures from endogenous molecules give rise to a phenotypical continuum that provides unique structural insight (i.e., molecular maps or “optical stains") of thin tissue sections with subcellular (nanoscale) resolution. We show that this phenotypical continuum can also be applied as a surrogate biomarker of prostate cancer malignancy, where patients with the most aggressive tumors show a ubiquitous glandular phenotypical shift. In addition to providing several novel “optical stains” with contrast for disease, we also adapt a two-part Cycle-consistent Generative Adversarial Network to translate the label-free deep-UV images into virtual hematoxylin and eosin (H&E) stained images, thus providing multiple stains (including the gold-standard H&E) from the same unlabeled specimen. Agreement between the virtual H&E images and the H&E-stained tissue sections is evaluated by a panel of pathologists who find that the two modalities are in excellent agreement. This work has significant implications towards improving our ability to objectively quantify prostate cancer grade and aggressiveness, thus improving the management and clinical outcomes of prostate cancer patients. This same approach can also be applied broadly in other tumor types to achieve low-cost, stain-free, quantitative histopathological analysis.
Brain tumor surgery involves a delicate balance between maximizing the extent of tumor resection while minimizing damage to healthy brain tissue that is vital for neurological function. However, differentiating between tumor, particularly infiltrative disease, and healthy brain in-vivo remains a significant clinical challenge. Here we demonstrate that quantitative oblique back illumination microscopy (qOBM)—a novel label-free optical imaging technique that achieves tomographic quantitative phase imaging in thick scattering samples—clearly differentiates between healthy brain tissue and tumor, including infiltrative disease. Data from a bulk and infiltrative brain tumor animal model show that qOBM enables quantitative phase imaging of thick fresh brain tissues with remarkable cellular and subcellular detail that closely resembles histopathology using hematoxylin and eosin (H&E) stained fixed tissue sections, the gold standard for cancer detection. Quantitative biophysical features are also extracted from qOBM which yield robust surrogate biomarkers of disease that enable (1) automated tumor and margin detection with high sensitivity and specificity and (2) facile visualization of tumor regions. Finally, we develop a low-cost, flexible, fiber-based handheld qOBM device which brings this technology one step closer to in-vivo clinical use. This work has significant implications for guiding neurosurgery by paving the way for a tool that delivers real-time, label-free, in-vivo brain tumor margin detection.
Hematological analysis, via a complete blood count (CBC) and microscopy, is critical for screening, diagnosing, and monitoring blood conditions and diseases but requires complex equipment, multiple chemical reagents, laborious system calibration and procedures, and highly trained personnel for operation. Here we introduce a hematological assay based on label-free molecular imaging with deep-ultraviolet microscopy that can provide fast quantitative information of key hematological parameters to facilitate and improve hematological analysis. We demonstrate that this label-free approach yields 1) a quantitative five-part white blood cell differential, 2) quantitative red blood cell and hemoglobin characterization, 3) clear identification of platelets, and 4) detailed subcellular morphology. Analysis of tens of thousands of live cells is achieved in minutes without any sample preparation. Finally, we introduce a pseudocolorization scheme that accurately recapitulates the appearance of cells under conventional staining protocols for microscopic analysis of blood smears and bone marrow aspirates. Diagnostic efficacy is evaluated by a panel of hematologists performing a blind analysis of blood smears from healthy donors and thrombocytopenic and sickle cell disease patients. This work has significant implications toward simplifying and improving CBC and blood smear analysis, which is currently performed manually via bright-field microscopy, and toward the development of a low-cost, easy-to-use, and fast hematological analyzer as a point-of-care device and for low-resource settings.
We present a novel light source specifically tailored for stimulated Raman scattering–spectroscopic optical coherence tomography (SRS-SOCT), which is, to the best of our knowledge, a novel molecular imaging method that combines the molecular sensitivity of SRS with the spatial and spectral multiplexing capabilities of SOCT. The novel laser consists of an 8 W, 450 fs Yb:KGW oscillator, with a repetition rate of 40 MHz, which delivers the Stokes beam for SRS-SOCT and also pumps and amplifies an optical parametric oscillator (OPO). The output of the amplified OPO is then frequency doubled and coherently broadened using a custom-made tapered fiber that generates bandwidth pulses >40 nm, compressible to <50 fs, with the average power over 150 mW, near the shot-noise limit above 250 kHz. The broadened and compressed pulse simultaneously serves as the pump beam and SOCT light source for SRS-SOCT. This light source is assessed for SRS-SOCT, and its implications for other imaging methods are discussed.