by
Gregory Esper;
Fadi Nahab;
Samir Belagaje;
Srikant Rangaraju;
D Alabyad;
M Lemuel-Clarke;
M Antwan;
L Henriquez;
A Mosley;
J Cabral;
T Walczak;
M Ido;
P Hashima;
R Bayakly;
K Collins;
L Sutherly-Bhadsavle;
C Brasher;
E Danaie;
P Victor;
D Westover;
M Webb;
S Skukalek;
AM Barrett
Background: The expansion of telemedicine associated with the COVID-19 pandemic has influenced outpatient medical care. The objective of our study was to determine the impact of telemedicine on post-acute stroke clinic follow-up. Methods: We retrospectively evaluated the impact of telemedicine in Emory Healthcare, an academic healthcare system of comprehensive and primary stroke centers in Atlanta, Georgia, on post-hospital stroke clinic follow-up. We compared the frequency of 90-day follow-up in a centralized subspecialty stroke clinic among patients hospitalized before the local COVID-19 pandemic (January 1, 2019- February 28, 2020), during (March 1- April 30, 2020) and after telemedicine implementation (May 1- December 31, 2020). A comparison was made across hospitals less than 1 mile, 10 miles, and 25 miles from the stroke clinic. Results: Of 1096 ischemic stroke patients discharged home or to a rehab facility during the study period, 342 (31%) had follow-up in the Emory Stroke Clinic (comprehensive stroke center 46%, primary stroke center 10 miles away 18%, primary stroke center 25 miles away 14%). Overall, 90-day follow-up increased from 19% to 41% after telemedicine implementation (p<0.001) with telemedicine appointments amounting for up to 28% of all follow-up visits. In multivariable analysis, factors associated with teleneurology follow-up (vs no follow-up) included discharge from the comprehensive stroke center, thrombectomy treatment, private insurance, private transport to the hospital, NIHSS 0-5 and history of dyslipidemia. Conclusions: Despite telemedicine implementation at an academic healthcare network successfully increasing post-stroke discharge follow-up in a centralized subspecialty stroke clinic, the majority of patients did not complete 90-day follow-up during the COVID-19 pandemic.
Objective: In the setting of the Coronavirus Disease 2019 (COVID-19) global pandemic caused by SARS-CoV-2, a potential association of this disease with stroke has been suggested. We aimed to describe the characteristics of patients who were admitted with COVID-19 and had an acute ischemic stroke (AIS). Methods: This is a case series of PCR-confirmed COVID-19 patients with ischemic stroke admitted to an academic health system in metropolitan Atlanta, Georgia (USA) between March 24th, 2020 and July 17th, 2020. Demographic, clinical, and radiographic characteristics were described. Results: Of 396 ischemic stroke patients admitted during this study period, 13 (2.5%) were also diagnosed with COVID-19. The mean age of patients was 61.6 ± 10.8 years, 10 (76.9%) male, 8 (61.5%) were Black Americans, mean time from last normal was 4.97 ± 5.1 days, and only one received acute reperfusion therapy. All 13 patients had at least one stroke-associated co-morbidity. The predominant pattern of ischemic stroke was embolic with 4 explained by atrial fibrillation. COVID-19 patients had a significantly higher rate of cryptogenic stroke than non-COVID-19 patients during the study period (69% vs 17%, p = 0.0001). Conclusions: In our case series, ischemic stroke affected COVID-19 patients with traditional stroke risk factors at an age typically seen in non-COVID populations, and mainly affecting males and Black Americans. We observed a predominantly embolic pattern of stroke with a higher than expected rate of cryptogenic strokes, a prolonged median time to presentation and symptom recognition limiting the use of acute reperfusion treatments. These results highlight the need for increased community awareness, early identification, and management of AIS in COVID-19 patients.
Background: The objective of our study was to evaluate vaccine type, COVID-19 infection, and their association with stroke soon after COVID-19 vaccination. Methods: In a retrospective cohort study, we estimated the 21-day post-vaccination incidence of stroke among the recipients of the first dose of a COVID-19 vaccine. We linked the Georgia Immunization Registry with the Georgia Coverdell Acute Stroke Registry and the Georgia State Electronic Notifiable Disease Surveillance System data to assess the relative risk of stroke by the vaccine type. Results: Approximately 5 million adult Georgians received at least one COVID-19 vaccine between 1 December 2020 and 28 February 2022: 54% received BNT162b2, 41% received mRNA-1273, and 5% received Ad26.COV2.S. Those with concurrent COVID-19 infection within 21 days post-vaccination had an increased risk of ischemic (OR = 8.00, 95% CI: 4.18, 15.31) and hemorrhagic stroke (OR = 5.23, 95% CI: 1.11, 24.64) with no evidence for interaction between the vaccine type and concurrent COVID-19 infection. The 21-day post-vaccination incidence of ischemic stroke was 8.14, 11.14, and 10.48 per 100,000 for BNT162b2, mRNA-1273, and Ad26.COV2.S recipients, respectively. After adjusting for age, race, gender, and COVID-19 infection status, there was a 57% higher risk (OR = 1.57, 95% CI: 1.02, 2.42) for ischemic stroke within 21 days of vaccination associated with the Ad26.COV2.S vaccine compared to BNT162b2; there was no difference in stroke risk between mRNA-1273 and BNT162b2. Conclusion: Concurrent COVID-19 infection had the strongest association with early ischemic and hemorrhagic stroke after the first dose of COVID-19 vaccination. Although not all determinants of stroke, particularly comorbidities, were considered in this analysis, the Ad26.COV2.S vaccine was associated with a higher risk of early post-vaccination ischemic stroke than BNT162b2.
Background: After stroke, increases in contralesional primary motor cortex (M1CL) activity and excitability have been reported. In pre-clinical studies, M1CL reorganization is related to the extent of ipsilesional M1 (M1IL) injury, but this has yet to be tested clinically. Objectives: We tested the hypothesis that the extent of damage to the ipsilesional M1 and/or its corticospinal tract (CST) determines the magnitude of M1CL reorganization and its relationship to affected hand function in humans recovering from stroke. Methods: Thirty-five participants with a single subacute ischemic stroke affecting M1 or CST and hand paresis underwent MRI scans of the brain to measure lesion volume and CST lesion load. Transcranial magnetic stimulation (TMS) of M1IL was used to determine the presence of an electromyographic response (motor evoked potential (MEP+ and MEP−)). M1CL reorganization was determined by TMS applied to M1CL at increasing intensities. Hand function was quantified with the Jebsen Taylor Hand Function Test. Results: The extent of M1CL reorganization was related to greater lesion volume in the MEP− group, but not in the MEP+ group. Greater M1CL reorganization was associated with more impaired hand function in MEP− but not MEP+ participants. Absence of an MEP (MEP−), larger lesion volumes and higher lesion loads in CST, particularly in CST fibers originating in M1 were associated with greater impairment of hand function. Conclusions: In the subacute post-stroke period, stroke volume and M1IL output determine the extent of M1CL reorganization and its relationship to affected hand function, consistent with pre-clinical evidence. ClinicalTrials.gov Identifier: NCT02544503.
by
Feras Akbik;
Ali Alawieh;
Charles Cawley;
Brian Howard;
Frank Tong;
Fadi Nahab;
Hassan Saad;
Laurie Dimisko;
Christian Mustroph;
Owen Samuels;
Gustavo Pradilla;
Ilko Maier;
Nitin Goyal;
Robert M Starke;
Ansaar Rai;
Kyle M Fargen;
Marios N Psychogios;
Pascal Jabbour;
Reade De Leacy;
James Giles;
Travis M Dumont;
Peter Kan;
Adam S Arthur;
Roberto Javier Crosa;
Benjamin Gory;
Alejandro M Spiotta;
Jonathan Grossberg
Background Atrial fibrillation (AF) associated ischemic stroke has worse functional outcomes, less effective recanalization, and increased rates of hemorrhagic complications after intravenous thrombolysis (IVT). Limited data exist about the effect of AF on procedural and clinical outcomes after mechanical thrombectomy (MT). Objective To determine whether recanalization efficacy, procedural speed, and clinical outcomes differ in AF associated stroke treated with MT. Methods We performed a retrospective cohort study of the Stroke Thrombectomy and Aneurysm Registry (STAR) from January 2015 to December 2018 and identified 4169 patients who underwent MT for an anterior circulation stroke, 1517 (36.4 %) of whom had comorbid AF. Prospectively defined baseline characteristics, procedural outcomes, and clinical outcomes were reported and compared. Results AF predicted faster procedural times, fewer passes, and higher rates of first pass success on multivariate analysis (p<0.01). AF had no effect on intracranial hemorrhage (aOR 0.69, 95% CI 0.43 to 1.12) or 90-day functional outcomes (aOR 1.17, 95% CI 0.91 to 1.50) after MT, although patients with AF were less likely to receive IVT (46% vs 54%, p<0.0001). Conclusions In patients treated with MT, comorbid AF is associated with faster procedural time, fewer passes, and increased rates of first pass success without increased risk of intracranial hemorrhage or worse functional outcomes. These results are in contrast to the increased hemorrhage rates and worse functional outcomes observed in AF associated stroke treated with supportive care and or IVT. These data suggest that MT negates the AF penalty in ischemic stroke.
by
Dinesh Jillella;
Fadi Nahab;
Thanh N Nguyen;
Mohamad Abdalkader;
David S Liebeskind;
Nirav Vora;
Vivek Rai;
Diogo Haussen;
Raul Nogueira;
Shashvat Desai;
Ashutosh P Jadhav;
Alexandra L Czap;
Alicia M Zha;
Italo Linfante;
Ameer E Hassan;
Darko Quispe-Orozco;
Santiago Ortega-Gutierrez;
Priyank Khandelwal;
Pratit Patel;
Osama Zaidat;
Tudor G Jovin;
Scott Kamen;
James E Siegler
Introduction: We have demonstrated in a multicenter cohort that the COVID-19 pandemic has led to a delay in intravenous thrombolysis (IVT) among stroke patients. Whether this delay contributes to meaningful short-term outcome differences in these patients warranted further exploration. Methods: We conducted a nested observational cohort study of adult acute ischemic stroke patients receiving IVT from 9 comprehensive stroke centers across 7 U.S states. Patients admitted prior to the COVID-19 pandemic (1/1/2019–02/29/2020) were compared to patients admitted during the early pandemic (3/1/2020–7/31/2020). Multivariable logistic regression was used to estimate the effect of IVT delay on discharge to hospice or death, with treatment delay on admission during COVID-19 included as an interaction term. Results: Of the 676 thrombolysed patients, the median age was 70 (IQR 58–81) years, 313 were female (46.3%), and the median NIHSS was 8 (IQR 4–16). Longer treatment delays were observed during COVID-19 (median 46 vs 38 min, p = 0.01) and were associated with higher in-hospital death/hospice discharge irrespective of admission period (OR per hour 1.08, 95% CI 1.01–1.17, p = 0.03). This effect was strengthened after multivariable adjustment (aOR 1.15, 95% CI 1.07–1.24, p < 0.001). There was no interaction of treatment delay on admission during COVID-19 (pinteraction = 0.65). Every one-hour delay in IVT was also associated with 7% lower odds of being discharged to home or acute inpatient rehabilitation facility (aOR 0.93, 95% CI 0.89–0.97, p < 0.001). Conclusion: Treatment delays observed during the COVID-19 pandemic led to greater early mortality and hospice care, with a lower probability of discharge to home/rehabilitation facility. There was no effect modification of treatment delay on admission during the pandemic, indicating that treatment delay at any time contributes similarly to these short-term outcomes.
Background
The COVID-19 pandemic led to profound changes in the organization of health care systems worldwide.
Aims
We sought to measure the global impact of the COVID-19 pandemic on the volumes for mechanical thrombectomy, stroke, and intracranial hemorrhage hospitalizations over a three-month period at the height of the pandemic (1 March–31 May 2020) compared with two control three-month periods (immediately preceding and one year prior).
Methods
Retrospective, observational, international study, across 6 continents, 40 countries, and 187 comprehensive stroke centers. The diagnoses were identified by their ICD-10 codes and/or classifications in stroke databases at participating centers.
Results
The hospitalization volumes for any stroke, intracranial hemorrhage, and mechanical thrombectomy were 26,699, 4002, and 5191 in the three months immediately before versus 21,576, 3540, and 4533 during the first three pandemic months, representing declines of 19.2% (95%CI, −19.7 to −18.7), 11.5% (95%CI, −12.6 to −10.6), and 12.7% (95%CI, −13.6 to −11.8), respectively. The decreases were noted across centers with high, mid, and low COVID-19 hospitalization burden, and also across high, mid, and low volume stroke/mechanical thrombectomy centers. High-volume COVID-19 centers (−20.5%) had greater declines in mechanical thrombectomy volumes than mid- (−10.1%) and low-volume (−8.7%) centers (p < 0.0001). There was a 1.5% stroke rate across 54,366 COVID-19 hospitalizations. SARS-CoV-2 infection was noted in 3.9% (784/20,250) of all stroke admissions.
Conclusion
The COVID-19 pandemic was associated with a global decline in the volume of overall stroke hospitalizations, mechanical thrombectomy procedures, and intracranial hemorrhage admission volumes. Despite geographic variations, these volume reductions were observed regardless of COVID-19 hospitalization burden and pre-pandemic stroke/mechanical thrombectomy volumes.
Background: The objective of this study was to evaluate if anticoagulation therapy reduces recurrent stroke in embolic stroke of undetermined source (ESUS) patients with left atrial enlargement (LAE) or abnormal markers of coagulation and hemostatic activity (MOCHA) compared to antiplatelet therapy. Methods: ESUS patients from January 1, 2017, to June 30, 2019, underwent outpatient cardiac monitoring and the MOCHA profile (serum d-dimer, prothrombin fragment 1.2, thrombin–antithrombin complex, and fibrin monomer). Anticoagulation was offered to patients with abnormal MOCHA (≥2 elevated markers) or left atrial volume index 40 mL/m2. Patients were evaluated for recurrent stroke or major hemorrhage at routine clinical follow-up. We compared this patient cohort (cohort 2) to a historical cohort (cohort 1) who underwent the same protocol but remained on antiplatelet therapy. Results: Baseline characteristics in cohort 2 (n = 196; mean age = 63 ± 16 years, 59% female, 49% non-White) were similar to cohort 1 (n = 42) except that cohort 2 had less diabetes (43 vs. 24%, p = 0.01) and more tobacco use (26 vs. 43%, p = 0.04). Overall, 45 patients (23%) in cohort 2 initiated anticoagulation based on abnormal MOCHA or LAE. During mean follow-up of 13 ± 10 months, cohort 2 had significantly lower recurrent stroke rates than cohort 1 (14 vs. 3%, p = 0.009) with no major hemorrhages. Conclusions: Anticoagulation therapy in a subgroup of ESUS patients with abnormal MOCHA or severe LAE may be associated with a reduced rate of recurrent stroke compared to antiplatelet therapy. A prospective, randomized study is warranted to validate these results.
Abnormal contralesional M1 activity is consistently reported in patients with compromised upper limb and hand function after stroke. The underlying mechanisms and functional implications of this activity are not clear, which hampers the development of treatment strategies targeting this brain area. The goal of the present study was to determine the extent to which contralesional M1 activity can be explained by the demand of a motor task, given recent evidence for increasing ipsilateral M1 activity with increasing demand in healthy age-matched controls. We hypothesized that higher activity in contralesional M1 is related to greater demand on precision in a hand motor task. fMRI data were collected from 19 patients with ischemic stroke affecting hand function in the subacute recovery phase and 31 healthy, right-handed, age-matched controls. The hand motor task was designed to parametrically modulate the demand on movement precision. Electromyography data confirmed strictly unilateral task performance by all participants. Patients showed significant impairment relative to controls in their ability to perform the task in the fMRI scanner. However, patients and controls responded similarly to an increase in demand for precision, with better performance for larger targets and poorer performance for smaller targets. Patients did not show evidence of elevated ipsilesional or contralesional M1 blood oxygenation level-dependent (BOLD) activation relative to healthy controls and mean BOLD activation levels were not elevated for patients with poorer performance relative to patients with better task performance. While both patients and healthy controls showed demand-dependent increases in BOLD activation in both ipsilesional/contralateral and contralesional/ipsilateral hemispheres, patients with stroke were less likely to show evidence of a linear relationship between the demand on precision and BOLD activation in contralesional M1 than healthy controls. Taken together, the findings suggest that task demand affects the BOLD response in contralesional M1 in patients with stroke, though perhaps less strongly than in healthy controls. This has implications for the interpretation of reported abnormal bilateral M1 activation in patients with stroke because in addition to contralesional M1 reorganization processes it could be partially related to a response to the relatively higher demand of a motor task when completed by patients rather than by healthy controls.
by
Fadi Nahab;
George A Cotsonis;
Michael Lynn;
Edward Feldmann;
Seemant Chaturvedi;
J. Claude Hemphill;
Richard Zweifler;
Karen Johnston;
David Bonovich;
Scott Kasner;
Marc Chimowitz
Background and Purpose
There are limited data on the prevalence and prognosis of asymptomatic intracranial stenosis (AIS).
Methods
Baseline cerebral angiograms and MR angiograms were used to determine AIS (50% to 99%) coexistent to symptomatic intracranial stenosis for patients enrolled in the Warfarin-Aspirin Symptomatic Intracranial Disease study.
Results
Coexisting AIS were detected in 18.9% (n=14/74) of patients undergoing 4-vessel cerebral angiography and 27.3% (n=65/238) of patients undergoing MR angiogram. During a mean follow-up period of 1.8 years, no ischemic strokes were attributable to an AIS on cerebral angiography and 5 ischemic strokes (5.9%, 95% CI: 2.1% to 12.3%) occurred in the AIS territory on MR angiogram (risk at 1 year=3.5%, 95% CI: 0.8% to 9.0%).
Conclusions
Whereas the prevalence of coexisting AIS (50% to 99%) in patients with symptomatic stenosis is high, the risk of stroke from these asymptomatic stenoses is low.