by
Flor M. Munoz;
Evan Anderson;
David I. Bernstein;
Christopher J. Harrison;
Barbara Pahud;
Edwin Anderson;
C. Buddy Creech;
Andrea A. Berry;
Karen L. Kotloff;
Emmanuel B. Walter;
Robert L. Atmar;
Abbie R. Bellamy;
Soju Chang;
Wendy A. Keitel
Objective
In response to the emergence of influenza viruses with pandemic potential, we evaluated a swine-origin influenza A/H3N2 variant (H3N2v) vaccine in children.
Study Design
This multicenter phase II open-label study assessed the safety and immunogenicity of two doses, 21 days apart, of investigational unadjuvanted subvirion monovalent inactivated H3N2v vaccine administered via intramuscular injection. Children 6–35 months of age received 7.5mcg or 15mcg of hemagglutinin (HA)/dose; children 3–17 years of age received 15mcg HA/dose. Safety and reactogenicity were assessed by measuring the occurrence of solicited injection site and systemic reactions in the 7 days after each vaccination; adverse events were assessed for 42 days and serious adverse events for 7 months after the first vaccination. Immunogenicity was evaluated by measuring hemagglutination inhibition (HAI) and neutralizing (Neut) antibodies to H3N2v prior to and 21 days after each vaccination. Cross-reactivity against seasonal H3N2 strains was evaluated.
Results
The H3N2v vaccine was well tolerated. Transient mild to moderate injection site tenderness, pain and erythema was observed, with the most commonly reported systemic reactogenicity being irritability in children 6–35 months, and headache and fatigue in children 9–17 years old. Children 6–35 months old, whether they received 7.5mcg or 15mcg/dose, had low HAI and Neut antibody responses after two doses compared to older children. Children under 9 years of age required two doses of vaccine to demonstrate a response, while 9–17 year olds responded well after one dose. Previous influenza vaccination and older age were associated with higher immune responses to H3N2v vaccine. Children 9–17 years of age also developed cross-reactive antibodies against recent seasonal H3N2 influenza viruses.
Conclusion
The H3N2v vaccine was safe and immunogenic in children and adolescents. Age-related increases in immunogenicity against H3N2v and seasonal H3N2 viruses were observed, suggesting prior priming via infection and/or immunization.
by
Evan Anderson;
Leonard R. Krilov;
John P. DeVincenzo;
Paul A. Checchia;
Natasha Halasa;
Eric A. F. Simoes;
Joseph B. Domachowske;
Michael L. Forbes;
Pia S. Pannaraj;
Scott J. McBride;
Kimmie K. McLaurin;
Veena R. Kumar;
Christopher S. Ambrose
Objective SENTINEL1 characterized U.S. preterm infants 29 to 35 weeks' gestational age (wGA) < 12 months old hospitalized for laboratory-confirmed respiratory syncytial virus (RSV) disease and not receiving RSV immunoprophylaxis during the 2014 to 2015 RSV season.
Study Design This is a noninterventional, observational, cohort study.
Results A total of 702 infants were hospitalized with community-acquired RSV disease, of whom an estimated 42% were admitted to the intensive care unit (ICU) and 20% required invasive mechanical ventilation (IMV). Earlier gestational age and younger chronologic age were associated with an increased frequency of RSV-confirmed hospitalization (RSVH), ICU admission, and IMV. Among infants 29 to 32 wGA and < 3 months of age, 68% required ICU admission and 44% required IMV. One death occurred of an infant 29 wGA. Among the 212 infants enrolled for in-depth analysis of health care resource utilization, mean and median RSVH charges were $55,551 and $27,461, respectively, which varied by intensity of care required. Outpatient visits were common, with 63% and 62% of infants requiring visits before and within 1 month following the RSVH, respectively.
Conclusion Preterm infants 29 to 35 wGA are at high risk for severe RSV disease, which imposes a substantial health burden, particularly in the first months of life.
Background: Infants with premature birth ≤35 weeks gestational age, chronic lung disease of prematurity and congenital heart disease are at an increased risk for lower respiratory tract infections and hospitalization from respiratory syncytial virus (RSV), which has been shown in randomized trials to be prevented by palivizumab. However, palivizumab effectiveness (PE) has not been studied in a large clinical setting.
Methods: A multicenter study among high-risk US and Canadian children younger than 24 months hospitalized with lower respiratory tract infection and whose nasopharyngeal aspirates were tested for human metapneumovirus (HMPV) and RSV were the subjects of the trial. We conducted a test-negative case-control study in these subjects to determine PE. We used an inverse propensity score weighted (IPSW) multiple logistic regression model to adjust PE.
Results: Palivizumab was used in 434 (51%) of 849 eligible children. RSV was identified in 403 (47%) children. The unadjusted PE was 43% [95% confidence interval (CI), 34%-51%)]. After IPSW adjustment, the adjusted PE was 58% (95% CI, 43%-69%). Palivizumab prevented intensive care unit admissions (PE, 62%; 95% CI, 35%-78%). PE for 29-35 weeks gestational age and ≤6 months of chronologic age without chronic lung disease of prematurity or congenital heart disease was 74% (95% CI, 56%-85%).
Conclusions: Using a test-negative case-control design with RSV molecular detection, palivizumab is shown to prevent RSV hospitalizations and intensive care unit admissions in high-risk infants.
Background: While vaccines have established utility against COVID-19, phase 3 efficacy studies have generally not comprehensively evaluated protection provided by previous infection or hybrid immunity (previous infection plus vaccination). Individual patient data from US government-supported harmonized vaccine trials provide an unprecedented sample population to address this issue. We characterized the protective efficacy of previous SARS-CoV-2 infection and hybrid immunity against COVID-19 early in the pandemic over three-to six-month follow-up and compared with vaccine-associated protection. Methods: In this post-hoc cross-protocol analysis of the Moderna, AstraZeneca, Janssen, and Novavax COVID-19 vaccine clinical trials, we allocated participants into four groups based on previous-infection status at enrolment and treatment: no previous infection/placebo; previous infection/placebo; no previous infection/vaccine; and previous infection/vaccine. The main outcome was RT-PCR-confirmed COVID-19 >7–15 days (per original protocols) after final study injection. We calculated crude and adjusted efficacy measures. Findings: Previous infection/placebo participants had a 92% decreased risk of future COVID-19 compared to no previous infection/placebo participants (overall hazard ratio [HR] ratio: 0.08; 95% CI: 0.05–0.13). Among single-dose Janssen participants, hybrid immunity conferred greater protection than vaccine alone (HR: 0.03; 95% CI: 0.01–0.10). Too few infections were observed to draw statistical inferences comparing hybrid immunity to vaccine alone for other trials. Vaccination, previous infection, and hybrid immunity all provided near-complete protection against severe disease. Interpretation: Previous infection, any hybrid immunity, and two-dose vaccination all provided substantial protection against symptomatic and severe COVID-19 through the early Delta period. Thus, as a surrogate for natural infection, vaccination remains the safest approach to protection. Funding: National Institutes of Health.
Vaccine protection against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection wanes over time, requiring updated boosters. In a phase 2, open-label, randomized clinical trial with sequentially enrolled stages at 22 US sites, we assessed safety and immunogenicity of a second boost with monovalent or bivalent variant vaccines from mRNA and protein-based platforms targeting wild-type, Beta, Delta and Omicron BA.1 spike antigens. The primary outcome was pseudovirus neutralization titers at 50% inhibitory dilution (ID50 titers) with 95% confidence intervals against different SARS-CoV-2 strains. The secondary outcome assessed safety by solicited local and systemic adverse events (AEs), unsolicited AEs, serious AEs and AEs of special interest. Boosting with prototype/wild-type vaccines produced numerically lower ID50 titers than any variant-containing vaccine against all variants. Conversely, boosting with a variant vaccine excluding prototype was not associated with decreased neutralization against D614G. Omicron BA.1 or Beta monovalent vaccines were nearly equivalent to Omicron BA.1 + prototype or Beta + prototype bivalent vaccines for neutralization of Beta, Omicron BA.1 and Omicron BA.4/5, although they were lower for contemporaneous Omicron subvariants. Safety was similar across arms and stages and comparable to previous reports. Our study shows that updated vaccines targeting Beta or Omicron BA.1 provide broadly crossprotective neutralizing antibody responses against diverse SARS-CoV-2 variants without sacrificing immunity to the ancestral strain. ClinicalTrials.gov registration: NCT05289037 .
Most reverse transcription PCR protocols for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) include 2-3 targets for detection. We developed a triplex, real-time reverse transcription PCR for SARS-CoV-2 that maintained clinical performance compared with singleÂplex assays. This protocol could streamline detection and decrease reagent use during current high SARS-CoV-2 testing demands.
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in late 2019 and spread globally, prompting an international effort to accelerate development of a vaccine. The candidate vaccine mRNA-1273 encodes the stabilized prefusion SARS-CoV-2 spike protein. METHODS We conducted a phase 1, dose-escalation, open-label trial including 45 healthy adults, 18 to 55 years of age, who received two vaccinations, 28 days apart, with mRNA-1273 in a dose of 25 μg, 100 μg, or 250 μg. There were 15 participants in each dose group. RESULTS After the first vaccination, antibody responses were higher with higher dose (day 29 enzyme-linked immunosorbent assay anti–S-2P antibody geometric mean titer [GMT], 40,227 in the 25-μg group, 109,209 in the 100-μg group, and 213,526 in the 250-μg group). After the second vaccination, the titers increased (day 57 GMT, 299,751, 782,719, and 1,192,154, respectively). After the second vaccination, serum-neutralizing activity was detected by two methods in all participants evaluated, with values generally similar to those in the upper half of the distribution of a panel of control convalescent serum specimens. Solicited adverse events that occurred in more than half the participants included fatigue, chills, headache, myalgia, and pain at the injection site. Systemic adverse events were more common after the second vaccination, particularly with the highest dose, and three participants (21%) in the 250-μg dose group reported one or more severe adverse events. CONCLUSIONS The mRNA-1273 vaccine induced anti–SARS-CoV-2 immune responses in all participants, and no trial-limiting safety concerns were identified. These findings support further development of this vaccine.
TO THE EDITOR:
Interim results from a phase 3 trial of the Moderna mRNA-1273 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine indicated 94% efficacy in preventing coronavirus disease 2019 (Covid-19).1 The durability of protection is currently unknown. We describe mRNA1273-elicited binding and neutralizing antibodies in 33 healthy adult participants in an ongoing phase 1 trial,2-4 stratified according to age, at 180 days after the second dose of 100 μg (day 209).
The IMPACC cohort, composed of >1,000 hospitalized COVID-19 participants, contains five illness trajectory groups (TGs) during acute infection (first 28 days), ranging from milder (TG1–3) to more severe disease course (TG4) and death (TG5). Here, we report deep immunophenotyping, profiling of >15,000 longitudinal blood and nasal samples from 540 participants of the IMPACC cohort, using 14 distinct assays. These unbiased analyses identify cellular and molecular signatures present within 72 h of hospital admission that distinguish moderate from severe and fatal COVID-19 disease. Importantly, cellular and molecular states also distinguish participants with more severe disease that recover or stabilize within 28 days from those that progress to fatal outcomes (TG4 vs. TG5). Furthermore, our longitudinal design reveals that these biologic states display distinct temporal patterns associated with clinical outcomes. Characterizing host immune responses in relation to heterogeneity in disease course may inform clinical prognosis and opportunities for intervention.
Background. Respiratory syncytial virus (RSV) is a leading viral respiratory pathogen in infants. The objective of this study was to generate RSV live-attenuated vaccine (LAV) candidates by removing the G-protein mucin domains to attenuate viral replication while retaining immunogenicity through deshielding of surface epitopes. Methods. Two LAV candidates were generated from recombinant RSV A2-line19F by deletion of the G-protein mucin domains (A2-line19F-G155) or deletion of the G-protein mucin and transmembrane domains (A2-line19F-G155S). Vaccine attenuation was measured in BALB/c mouse lungs by fluorescent focus unit (FFU) assays and real-time polymerase chain reaction (RT-PCR). Immunogenicity was determined by measuring serum binding and neutralizing antibodies in mice following prime/boost on days 28 and 59. Efficacy was determined by measuring RSV lung viral loads on day 4 postchallenge. Results. Both LAVs were undetectable in mouse lungs by FFU assay and elicited similar neutralizing antibody titers compared to A2-line19F on days 28 and 59. Following RSV challenge, vaccinated mice showed no detectable RSV in the lungs by FFU assay and a significant reduction in RSV RNA in the lungs by RT-PCR of 560-fold for A2-line19F-G155 and 604-fold for A2-line19FG155S compared to RSV-challenged, unvaccinated mice. Conclusions. Removal of the G-protein mucin domains produced RSV LAV candidates that were highly attenuated with retained immunogenicity.