by
Yi Wen Kong;
Erik Dreaden;
Sandra Morandell;
Wen Zhou;
Sanjeev S. Dhara;
Ganapathy Sriram;
Fred C. Lam;
Jesse C. Patterson;
Mohiuddin Quadir;
Dinh Anh;
Kevin E. Shopsowitz;
Shohreh Varmeh;
Omer H. Yilmaz;
Stephen J. Lippard;
H. Christian Reinhardt;
Michael T. Hemann;
Paula T. Hammond;
Michael B. Yaffe
In response to DNA damage, a synthetic lethal relationship exists between the cell cycle checkpoint kinase MK2 and the tumor suppressor p53. Here, we describe the concept of augmented synthetic lethality (ASL): depletion of a third gene product enhances a pre-existing synthetic lethal combination. We show that loss of the DNA repair protein XPA markedly augments the synthetic lethality between MK2 and p53, enhancing anti-tumor responses alone and in combination with cisplatin chemotherapy. Delivery of siRNA-peptide nanoplexes co-targeting MK2 and XPA to pre-existing p53-deficient tumors in a highly aggressive, immunocompetent mouse model of lung adenocarcinoma improves long-term survival and cisplatin response beyond those of the synthetic lethal p53 mutant/MK2 combination alone. These findings establish a mechanism for co-targeting DNA damage-induced cell cycle checkpoints in combination with repair of cisplatin-DNA lesions in vivo using RNAi nanocarriers, and motivate further exploration of ASL as a generalized strategy to improve cancer treatment.
Therapies that bind with immune cells and redirect their cytotoxic activity toward diseased cells represent a promising and versatile approach to immunotherapy with applications in cancer, lupus, and other diseases; traditional methods for discovering these therapies, however, are often time-intensive and lack the throughput of related target-based discovery approaches. Inspired by the observation that the cytokine, IL-12, can enhance antileukemic activity of the clinically approved T cell redirecting therapy, blinatumomab, here we describe the structure and assembly of a chimeric immune cell-redirecting agent which redirects the lytic activity of primary human T cells toward leukemic B cells and simultaneously cotargets the delivery of T cell-stimulating IL-12. We further describe a novel method for the parallel assembly of compositionally diverse libraries of these bispecific T cell engaging cytokines (BiTEokines) and their high-throughput phenotypic screening, requiring just days for hit identification and the analysis of composition-function relationships. Using this approach, we identified CD19 × CD3 × IL12 compounds that exhibit ex vivo lytic activity comparable to current FDA-approved therapies for leukemia and correlated drug treatment with specific cell-cell contact, cytokine delivery, and leukemia cell lysis. Given the modular nature of these multivalent compounds and their rapid assembly/screening, we anticipate facile extension of this therapeutic approach to a wide range of immune cells, diseased cells, and soluble protein combinations in the future.
Cytokines act as potent, extracellular signals of the human immune system and can elicit striking treatment responses in patients with autoimmune disease, tissue damage, and cancer. Yet, despite their therapeutic potential, recombinant cytokine-mediated immune responses remain difficult to control as their administration is often systemic, whereas their intended sites of action are localized. To address the challenge of spatially and temporally constraining cytokine signals, we recently devised a strategy whereby recombinant cytokines are reversibly inactivated via chemical modification with photo-labile polymers that respond to visible LED light. Extending this approach to enable both in vivo and multicolor immune activation, here we describe a strategy whereby cytokines appended with heptamethine cyanine-polyethylene glycol are selectively re-activated ex vivo using tissue-penetrating near-infrared (NIR) light. We show that NIR LED light illumination of caged, pro-inflammatory cytokines restores cognate receptor signaling and potentiates the activity of T cell-engager cancer immunotherapies ex vivo. Using combinations of visible- and NIR-responsive cytokines, we further demonstrate multiwavelength optical control of T cell cytolysis ex vivo, as well as the ability to perform Boolean logic using multicolored light and orthogonally photocaged cytokine pairs as inputs and T cell activity as outputs. Together, this work demonstrates a novel approach to control extracellular immune cell signals using light, a strategy that in the future may improve our understanding of and ability to treat cancer and other diseases.
T-cell acute lymphoblastic leukemia (T-ALL) accounts for 15% of childhood ALL. The early T-precursor (ETP-ALL) subset is characterized by an immature T-cell phenotype, chemoresistance, and high rates of induction failure. MERTK receptor tyrosine kinase is ectopically expressed in half of T-ALLs, particularly those with an immature T-cell phenotype, suggesting a role in ETP-ALL. The anti-apoptotic protein B-cell lymphoma-2 (BCL-2) is essential for ETP-ALL cell survival. Here, we show that MERTK and BCL-2 mRNA and protein are preferentially expressed in ETP-ALL patient samples. The dual MERTK/FLT3 inhibitor MRX-2843 decreased MERTK activation and downstream signaling, inhibited cell expansion, and induced cell death in ETP-ALL cell lines. Further, 54% (21/39) of primary T-ALL patient samples were sensitive to MERTK inhibition. Treatment with MRX-2843 significantly reduced leukemia burden and prolonged survival in cell-line-derived T-ALL and ETP-ALL xenograft models. In a patient-derived ETP-ALL xenograft model, treatment with MRX-2843 markedly reduced peripheral blood leukemia and spleen weight compared to vehicle-treated mice and prolonged survival. MRX-2843 also synergized with venetoclax to provide enhanced anti-leukemia activity in ETP-ALL cell cultures, with a dose ratio of 1:20 MRX-2843:venetoclax providing optimal synergy. These data demonstrate the therapeutic potential of MRX-2843 in patients with T-ALL and provide rationale for clinical development. MRX-2843 monotherapy is currently being tested in patients with relapsed leukemia (NCT04872478). Further, our data indicate that combined MERTK and BCL-2 inhibition may be particularly effective for treatment of ETP-ALL.
Immunotherapies have revolutionized the treatment of B-cell acute lymphoblastic leukemia (B-ALL), but the duration of responses is still sub-optimal. We sought to identify mechanisms of immune suppression in B-ALL and strategies to overcome them. Plasma collected from children with B-ALL with measurable residual disease after induction chemotherapy showed differential cytokine expression, particularly IL-7, while single-cell RNA-sequencing revealed the expression of genes associated with immune exhaustion in immune cell subsets. We also found that the supernatant of leukemia cells suppressed T-cell function ex vivo. Modeling B-ALL in mice, we observed an altered tumor immune microenvironment, including compromised activation of T-cells and dendritic cells (DC). However, recombinant IL-12 (rIL-12) treatment of mice with B-ALL restored the levels of several pro-inflammatory cytokines and chemokines in the bone marrow and increased the number of splenic and bone marrow resident T-cells and DCs. RNA-sequencing of T-cells isolated from vehicle and rIL-12 treated mice with B-ALL revealed that the leukemia-induced increase in genes associated with exhaustion, including Lag3, Tigit, and Il10, was abrogated with rIL-12 treatment. In addition, the cytolytic capacity of T-cells co-cultured with B-ALL cells was enhanced when IL-12 and blinatumomab treatments were combined. Overall, these results demonstrate that the leukemia immune suppressive microenvironment can be restored with rIL-12 treatment which has direct therapeutic implications.
Polymer-drug conjugation (Harris, 1992; Harris and Chess, 2003; Haag and Kratz, 2006; Pelegri-O’Day et al., 2014; Hoffman, 2016; Ekladious et al., 2019) was first described in the 1954 by German chemist, Horst Jatzkewitz, who demonstrated that covalent attachment of poly (vinyl pyrrolidone) to the psychoactive compound, mescaline, could be used to prolong its circulation and duration of action (Figure 1A) (Jatzkewitz, 1954; Jatzkewitz, 1955; Luxenhofer, 2020). Yet despite its novelty and utility, Jatzkewitz’s innovation went largely unnoticed until the mid 1970s when it was revived by Ringsdorf, Kopecek, and Duncan, among others, who championed the notion that these novel macromolecules could enhance the suboptimal activity of various pharmaceuticals (Ringsdorf, 1975). It wouldn’t be until 1990—nearly 36 years from the publication of Jatzkewitz’s initial work—that the first polymer-drug conjugate would receive market approval in the form of Adagen, adenosine deaminase protein conjugated with 5 kDa poly (ethylene glycol), or PEG, used to treat a rare and hereditary, pediatric metabolic disorder called adenosine deaminase severe combined immunodeficiency (Hershfield et al., 1987).
Cytokine signaling is critical to a range of biological processes including cell development, tissue repair, aging, and immunity. In addition to acting as key signal mediators of the immune system, cytokines can also serve as potent immunotherapies with more than 20 recombinant products currently Food and Drug Administration (FDA)-approved to treat conditions including hepatitis, multiple sclerosis, arthritis, and various cancers. Yet despite their biological importance and clinical utility, cytokine immunotherapies suffer from intrinsic challenges that limit their therapeutic potential including poor circulation, systemic toxicity, and low tissue- or cell-specificity. In the past decade in particular, methods have been devised to engineer cytokines in order to overcome such challenges and here, the myriad strategies are reviewed that may be employed in order to improve the therapeutic potential of cytokine and chemokine immunotherapies with applications in cancer and autoimmune disease therapy, as well as tissue engineering and regenerative medicine. For clarity, these strategies are collected and presented as they vary across size scales, ranging from single amino acid substitutions, to larger protein-polymer conjugates, nano/micrometer-scale particles, and macroscale implants. Together, this work aims to provide readers with a timely view of the field of cytokine engineering with an emphasis on early-stage therapeutic approaches.
by
Erik Dreaden;
Yi Wen Kong;
Mohiuddin A. Quadir;
Santiago Correa;
Lucia Suárez-López;
Antonio E. Barberio;
Mun Kyung Hwang;
Aria C. Shi;
Benjamin Oberlton;
Paige N. Gallagher;
Kevin E. Shopsowitz;
Kevin M. Elias;
Michael B. Yaffe;
Paula T. Hammond
DNA damaging chemotherapy is a cornerstone of current front-line treatments for advanced ovarian cancer (OC). Despite the fact that a majority of these patients initially respond to therapy, most will relapse with chemo-resistant disease; therefore, adjuvant treatments that synergize with DNA-damaging chemotherapy could improve treatment outcomes and survival in patients with this deadly disease. Here, we report the development of a nanoscale peptide-nucleic acid complex that facilitates tumor-specific RNA interference therapy to chemosensitize advanced ovarian tumors to frontline platinum/taxane therapy. We found that the nanoplex-mediated silencing of the protein kinase, MK2, profoundly sensitized mouse models of high-grade serous OC to cytotoxic chemotherapy by blocking p38/MK2-dependent cell cycle checkpoint maintenance. Combined RNAi therapy improved overall survival by 37% compared with platinum/taxane chemotherapy alone and decreased metastatic spread to the lungs without observable toxic side effects. These findings suggest (a) that peptide nanoplexes can serve as safe and effective delivery vectors for siRNA and (b) that combined inhibition of MK2 could improve treatment outcomes in patients currently receiving frontline chemotherapy for advanced OC.