Although the oxidative pentose phosphate pathway is important for tumor growth, how 6-phosphogluconate dehydrogenase (6PGD) in this pathway is upregulated in human cancers is unknown. We found that 6PGD is commonly activated in EGF-stimulated cells and human cancer cells by lysine acetylation. Acetylation at K76 and K294 of 6PGD promotes NADP+ binding to 6PGD and formation of active 6PGD dimers, respectively. Moreover, we identified DLAT and ACAT2 as upstream acetyltransferases of K76 and K294, respectively, and HDAC4 as the deacetylase of both sites. Expressing acetyl-deficient mutants of 6PGD in cancer cells significantly attenuated cell proliferation and tumor growth. This is due in partto reduced levels of 6PGD products ribulose-5-phosphate and NADPH, which led to reduced RNA and lipid biosynthesis as well as elevated ROS. Furthermore, 6PGD activity is upregulated with increased lysine acetylation in primary leukemia cells from human patients, providing mechanistic insights into 6PGD upregulation in cancer cells.
Background & Aims: Chronic inflammation is a risk factor for colon cancer (CC). Lysophosphatidic acid (LPA), a naturally produced phospholipid, mediates multiple effects that are vital to disease process, including inflammation and cancer. The expression of LPA receptor 2 (LPA2) is up-regulated in several types of cancer, including ovarian and colon cancer, but the importance of LPA and LPA2 in the development and progression of CC is unclear. In this study, we sought to determine whether LPA and LPA2 regulate the progression of CC in vivo.
Methods: We examined the potential role of LPA in CC progression by administering LPA to ApcMin/+ mice. We determined the loss of LPA2 function in tumorigenesis in the colon by treating mice with genetic deletion of LPA2 (LPA2−/−) with azoxymethane (AOM) and dextran sulfate sodium (DSS).
Results: We found that LPA increased tumor incidence in Apcmin/+ mice. LPA2−/− mice showed reduced mucosal damage and fewer tumors than wild-type (WT) mice. Reduced epithelial cell proliferation and decreases in β-catenin, Krüppel-like factor 5 (KLF5), and cyclooxygenase-2 (COX-2) expression were observed in LPA2−/− mice. Unlike WT mice, induction of monocyte chemoattractant protein-1 (MCP-1) and macrophage migration inhibitory factor (MIF) was significantly attenuated in LPA2−/− mice with reduced infiltration by macrophages.
Conclusion: These results show that LPA is capable of promoting tumorigenesis in the colon. The absence of LPA2 attenuates several effects that contribute to cancer progression in vivo and, hence, the current study identifies LPA2 as an important modulator of CC.
FAT1 is frequently mutated in head and neck squamous cell carcinoma (HNSCC), but the biological and clinical effects of FAT1 mutations in HNSCC remain to be fully elucidated. We investigated the landscape of altered protein and gene expression associated with FAT1 mutations and clinical outcomes of patients with HNSCC. FAT1 mutation was stratified with clinical information from The Cancer Genome Atlas HNSCC databases with more than 200 proteins or phosphorylated sites. FAT1 mutation was significantly more prevalent among HPV, female, and older patients and was enriched in oral, larynx, and hypopharynx primary tumors. FAT1 mutation was also significantly associated with lower FAT1 gene expression and increased protein expression of HER3 pY1289, IRS1, and CAVEOLIN1. From an independent International Cancer Genome Consortium dataset, FAT1 mutation in oral cancer cooccurred with top mutated genes TP53 and CASP8. Poorer overall survival or progression-free survival was observed in patients with FAT1 mutation or altered HER3 pY1289, IRS1, or CAVEOLIN1. Pathway analysis revealed dominant ERBB/neuregulin pathways linked to FAT1 mutations in HNSCC, and protein signature panels uncovered the heterogeneity of patient subgroups. Decreased pEGFR, pHER2, and pERK and upregulated pHER3 and HER3 proteins were observed in two FAT1 knockout HNSCC cell lines, supporting that FAT1 alterations lead to altered EGFR/ERBB signaling. In squamous cancers of the lung and cervix, a strong association of FAT1 and EGFR gene expressions was identified. Collectively, these results suggest that alteration of FAT1 appears to involve mostly HPV HNSCC and may contribute to resistance to EGFR-targeted therapy.
Natural dietary agents have drawn a great deal of attention toward cancer prevention because of their wide safety margin. However, single agent intervention has failed to bring the expected outcome in clinical trials; therefore, combinations of chemopreventive agents are gaining increasingly popularity. In the present study, we investigated a combinatorial approach using two natural dietary polyphenols, luteolin and EGCG, and found that their combination at low doses (at which single agents induce minimal apoptosis) synergistically increased apoptosis (3–5-fold more than the additive level of apoptosis) in both head and neck and lung cancer cell lines. This combination also significantly inhibited growth of xenografted tumors in nude mice. The in vivo findings also were supported by significant inhibition of Ki-67 expression and increase in TUNEL-positive cells in xenografted tissues. Mechanistic studies revealed that the combination induced mitochondria-dependent apoptosis in some cell lines and mitochondria-independent apoptosis in others. Moreover, we found more efficient stabilization and ATM-dependent Ser15 phosphorylation of p53 due to DNA damage by the combination, and ablation of p53 using shRNA strongly inhibited apoptosis as evidenced by decreased poly(ADP-ribose) polymerase and caspase-3 cleavage. In addition, we observed mitochondrial translocation of p53 after treatment with luteolin or the combination of EGCG and luteolin. Taken together, our results for the first time suggest that the combination of luteolin and EGCG has synergistic/additive growth inhibitory effects and provides an important rationale for future chemoprevention trials of head and neck and lung cancers.
Purpose
Ribonucleotide reductase subunit M2 (RRM2) plays an active role in tumor progression. Recently, we reported that depletion of RRM2 by systemic delivery of a nanoparticle carrying RRM2-specific siRNA suppresses head and neck tumor growth. The aim of this study is to clarify the underlying mechanism by which RRM2 depletion inhibits tumor growth.
Methods
siRNA-mediated gene silencing was performed to downregulate RRM2. Immunoblotting, RT-PCR, confocal microscopy, tissue fractionation, gene overexpression and knockdown were employed to analyze critical apoptosis signaling. Conventional immunohistochemistry (IHC) and quantum dot-based IHF were applied to detect RRM2 and Bcl2 expression and localization in tissue samples from patients and mice.
Results
Knockdown of RRM2 led to apoptosis through the intrinsic pathway in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. We demonstrated that Bcl-2 is a key determinant controlling apoptosis, both in vitro and in vivo and that RRM2 depletion significantly reduces Bcl-2 protein expression. We observed that RRM2 regulates Bcl-2 protein stability, with RRM2 suppression leading to increased Bcl-2 degradation, and identified their co-localization in HNSCC and NSCLC cells. In a total of 50 specimens each from HNSCC and NSCLC patients, we identified the co-localization of Bcl-2 and RRM2 and found a significant positive correlation between their expression in HNSCC (R=0.98, p<0.0001) and NSCLC (R=0.92, p<0.0001) tumor tissues.
Conclusion
Our novel findings add to the knowledge of RRM2 in regulating expression of the anti-apoptotic protein Bcl-2 and reveal a critical link between RRM2 and Bcl-2 in apoptosis signaling.
Purpose
This study aimed to understand the prognostic value of integrin β1 expression in head and neck squamous cell carcinoma (HNSCC) and the mechanism underlying its association with metastatic HNSCC.
Experimental Design
Archival HNSCC tissues including 99 non-metastatic primary tumors and 101 metastatic primary tumors were examined for the association of integrin β1 expression with metastasis and disease prognosis by appropriate statistical methods. Fluorescence activated cell sorting was used to separate the integrin β1high/+ cell population from the integrin β1low/− population in HNSCC cell lines. These two populations and integrin β1 shRNA knock-down HNSCC cells were examined for the effect of integrin β1 on invasion in vitro and on lymph node and lung metastases in a xenograft mouse model. Expression and activation of matrix metalloproteinases (MMPs) were examined by zymography.
Results
Statistical analysis showed that integrin β1 expression was significantly higher in the metastatic primary tumors than in the non-metastatic tumors (42.6% vs 24.8%, p<0.0001 and p<0.0001 by univariate and multivariate analyses, respectively). In patients with lymph node metastasis, integrin β1 expression was inversely correlated with overall survival (p=0.035). The integrin β1 knock-down or integrin β1low/− HNSCC cells showed a significant reduction in lymph node and lung metastases in vivo (p<0.001 and p<0.05, respectively). Significantly reduced matrigel invasion capability was also found in integrin β1 knock-down or integrin β1low/− HNSCC cells (p< 0.01). Finally, zymography results showed integrin β1 affected HNSCC invasion by regulating MMP-2 activation.
Conclusion
These findings indicate that integrin β1 has a major impact on HNSCC prognosis through its regulation of metastasis.
Systemic delivery of siRNA to solid tumors remains challenging. In this study, we investigated the systemic delivery of an siRNA-nanoparticle targeting ribonucleotide reductase subunit M2 (RRM2), and evaluated its intratumoral kinetics, efficacy and mechanism of action. Knockdown of RRM2 by an RNAi mechanism strongly inhibited cell growth in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC) cell lines. In a mouse xenograft model of HNSCC, a single intravenous injection led to the accumulation of intact nanoparticles in the tumor that disassembled over a period of at least 3 days, leading to target gene knockdown lasting at least 10 days. A four-dose schedule of siRNA-nanoparticle delivering RRM2 siRNA targeted to HNSCC tumors significantly reduced tumor progression by suppressing cell proliferation and inducing apoptosis. These results show promise for the use of RRM2 siRNA-based therapy for HNSCC and possibly NSCLC.
This study explored whether expression of aldehyde dehydrogenase 1 (ALDH1A1) in the primary tumor correlated with lymph node metastasis (LNM) of squamous cell carcinoma of the head and neck (HNSCC). We used both quantum dot (QD)-based immunohistofluorescence (IHF) and conventional immunohistochemistry (IHC) to quantify ALDH1A1 expression in primary tumor samples taken from 96 HNSCC patients, 50 with disease in the lymph nodes and 46 without. The correlation between the quantified level of ALDH1A1 expression and LNM in HNSCC patients was evaluated with univariate and multivariate analysis. The prognostic value of ALDH1A1 was examined by Kaplan-Meier analysis and Wald test. ALDH1A1 was highly correlated with LNM in HNSCC patients (p < 0.0001 by QD-based IHF and 0.039 by IHC). The two methods (QD-based IHF and conventional IHC) for quantification of ALDH1A1 were found to be comparable (R = 0.75, p < 0.0001), but QD-IHF was more sensitive and objective than IHC. The HNSCC patients with low ALDH1A1 expression had a higher 5-year survival rate than those with high ALDH1A1 level (p = 0.025). Our study suggests that ALDH1A1 is a potential biomarker for predicting LNM in HNSCC patients, though it is not an independent prognostic factor for survival of HNSCC patients. Furthermore, QD-IHF has advantages over IHC in quantification of ALDH1A1 expression in HNSCC tissues.
Lysophosphatidic acids (LPA) exert multiple biological effects through specific G protein-coupled receptors. The LPA-activated receptor subtype LPA2 contains a carboxyl-terminal motif that allows interaction with PDZ domain-containing proteins, such as NHERF2 and PDZ-RhoGEF. To identify additional interacting partners of LPA2, the LPA2 carboxyl-terminus was used to screen a proteomic array of PDZ domains. In addition to the previously identified NHERF2, several additional LPA2-interacting PDZ domains were found. These included MAGI-2, MAGI-3 and neurabin. In the present work, we demonstrate the specific interaction between LPA2 and MAGI-3, and the effects of MAGI-3 in colon cancer cells using SW480 as a cell model. MAGI-3 specifically bound to LPA2, but not to LPA1 and LPA3. This interaction was mediated via the fifth PDZ domain of MAGI-3 interacting with the carboxyl-terminal 4 amino acids of LPA2, and mutational alteration of the carboxyl-terminal sequences of LPA2 severely attenuated its ability to bind MAGI-3. LPA2 also associated with MAGI-3 in cells as determined by co-affinity purification. Overexpression of MAGI-3 in SW480 cells showed no apparent effect on LPA-induced activation of Erk and Akt. In contrast, silencing of MAGI-3 expression by siRNA drastically inhibited LPA-induced Erk activation, suggesting that the lack of an effect by overexpression was due to the high endogenous MAGI-3 level in these cells. Previous studies have shown that the cellular signaling elicited by LPA results in activation of the small GTPase RhoA by Gα12/13 — as well as Gαq-dependent pathways. Overexpression of MAGI-3 stimulated LPA-induced RhoA activation, whereas silencing of MAGI-3 by siRNA resulted in a small but statistically significant decrease in RhoA activation. These results demonstrate that MAGI-3 interacts directly with LPA2 and regulates the ability of LPA2 to activate Erk and RhoA.
Photodynamictherapy (PDT) uses a drug called a photosensitizer that is excited by irradiation with a laser light of a particular wavelength, which generates reactive singlet oxygen that damages the tumor cells. The photosensitizer and light are inert; therefore, systemic toxicities are minimized in PDT. The synthesis of novel PDT drugs and the use of nanosized carriers for photosensitizers may improve the efficiency of the therapy and the delivery of the drug. In this study, we formulated two nanoparticles with and without a targeting ligand to encapsulate phthalocyanines 4 (Pc 4) molecule and compared their biodistributions. Metastatic human head and neck cancer cells (M4e) were transplanted into nude mice. After 2–3 weeks, the mice were injected with Pc 4, Pc 4 encapsulated into surface coated iron oxide (IO-Pc 4), and IO-Pc 4 conjugated with a fibronectin-mimetic peptide (FMP-IO-Pc 4) which binds specifically to integrin β1. The mice were imaged using a multispectral camera. Using multispectral images, a library of spectral signatures was created and the signal per pixel of each tumor was calculated, in a grayscale representation of the unmixed signal of each drug. An enhanced biodistribution of nanoparticle encapsulated PDT drugs compared to non-formulated Pc 4 was observed. Furthermore, specific targeted nanoparticles encapsulated Pc 4 has a quicker delivery time and accumulation in tumor tissue than the non-targeted nanoparticles. The nanoparticle-encapsulated PDT drug can have a variety of potential applications in cancer imaging and treatment.