by
Jose A. Bazan;
Yih-Ling Tzeng;
Katarina M. Bischof;
Sarah W. Satola;
David Stephens;
Jennifer L. Edwards;
Alexandria Carter;
Brandon Snyder;
Abigail Norris Turner
The US Neisseria meningitidis urethritis clade (US_NmUC) harbors gonococcal deoxyribonucleic acid alleles and causes gonorrhea-like urogenital tract disease. A large convenience sample of US_NmUC isolates (N = 122) collected between January 2015 and December 2019 in Columbus, Ohio demonstrated uniform susceptibility to antibiotics recommended for gonorrhea treatment and meningococcal chemoprophylaxis.
SYNOPSIS
Objectives
The purpose of this study was to determine from state and local health departments: (1) how they purchase, distribute, and fund influenza vaccine; (2) whether they experienced a shortage in 2003/04; (3) how the shortages were handled; and (4) how they prepared for distribution in 2004/05.
Methods
A web-based survey was completed from June to August 2004 in eight Southeastern states.
Results
Data were obtained from each state and 222 local health departments. Major differences between and within states were found with regard to purchasing, distributing, and funding influenza vaccine. Although the majority of health departments experienced periods of shortages in 2003/2004, surpluses of vaccine remained at the end of the season. There was little evidence of interaction between the public and private sectors to share vaccine resources in response to shortages. Tracking systems for redistribution of vaccine or follow-up were often not in place. Entering the 2004/05 season, 25% of states and 11% of counties were not developing any special procedures to deal with shortages beyond what was in place earlier.
Conclusions
Better systems and funding are needed, especially for adult influenza vaccine delivery and for redistribution of influenza vaccine in response to shortages.
A major contributor to the emergence of antibiotic resistance in Gram-positive bacterial pathogens is the expansion of acquired, inducible genetic elements. Although acquired, inducible antibiotic resistance is not new, the interest in its molecular basis has been accelerated by the widening distribution and often ‘silent’ spread of the elements responsible, the diagnostic challenges of such resistance and the mounting limitations of available agents to treat Gram-positive infections. Acquired, inducible antibiotic resistance elements belong to the accessory genome of a species and are horizontally acquired by transformation/recombination or through the transfer of mobile DNA elements. The two key, but mechanistically very different, induction mechanisms are: ribosome-sensed induction, characteristic of the macrolide–lincosamide–streptogramin B antibiotics and tetracycline resistance, leading to ribosomal modifications or efflux pump activation; and resistance by cell surface-associated sensing of β-lactams (e.g., oxacillin), glycopeptides (e.g., vancomycin) and the polypeptide bacitracin, leading to drug inactivation or resistance due to cell wall alterations.
The adjuvant activity of Neisseria meningitidis serogroup B lipopoly(oligo)saccharide (LOS) from wild-type and genetically-defined LOS mutants and unglycosylated meningococcal lipid A was assessed in C3H/HeN and C3H/HeJ mice. Meningococcal lipid A, a weak agonist for TLR4/MD-2 in human macrophages, was found to have adjuvant activity similar to that of wild-type and KDO2-lipid A LOS in C3H/HeN mice. All meningococcal LOS structures as adjuvants induced high titers of IgG1, IgG2a and IgG2b but very little IgG3 to OMP compared to no adjuvant PBS controls. In addition, induced OMP antibodies were shown to have high bactericidal activity against serogroup B meningococci. Purified LOS and lipid A structures failed to induce any adjuvant activity in C3H/HeJ mice indicating that meningococcal LOS as an adjuvant was TLR4-dependent. Unglycosylated meningococcal lipid A because of its weak agonist activity for human macrophages and retention of adjuvant activity may be a candidate for use in serogroup B meningococcal OMP and OMV vaccines and for use as an adjuvant in other vaccines.
Capsule expression in Neisseria meningitidis is encoded by the cps locus comprised of genes required for biosynthesis and surface translocation. Located adjacent to the gene encoding the polysialyltransferase in serogroups expressing sialic acid-containing capsule, NMB0065 is likely a member of the cps locus, but it is not found in serogroups A or X that express non-sialic acid capsules. To further understand its role in CPS expression, NMB0065 mutants were created in the serogroups B, C and Y strains. The mutants were as sensitive as unencapsulated strains to killing by normal human serum, despite producing near wild-type levels of CPS. Absence of surface expression of capsule was suggested by increased surface hydrophobicity and confirmed by immunogold electron microscopy, which revealed the presence of large vacuoles containing CPS within the cell. GC-MS and NMR analyses of purified capsule from the mutant revealed no apparent changes in polymer structures and lipid anchors. Mutants of NMB0065 homologues in other sialic acid CPS expressing meningococcal serogroups had similar phenotypes. Thus, NMB0065 (CtrG) is not involved in biosynthesis or lipidation of sialic acid-containing capsule but encodes a protein required for proper coupling of the assembly complex to the membrane transport complex allowing surface expression of CPS.
Streptococcus pneumoniae type 2 pili are recently identified fimbrial structures extending from the bacterial surface and formed by polymers of the structural protein PitB. Intramolecular isopeptide bonds are a characteristic of the related pilus backbone protein Spy0128 of group A streptococci. Based on the identification of conserved residues in PitB, we predicted two intramolecular isopeptide bonds in PitB. Using a combination of tandem mass spectrometry and Edman sequencing, we show that these bonds were formed between Lys63-Asn214 and Lys243-Asn372 in PitB. Mutant proteins lacking the intramolecular isopeptide bonds retained the proteolytic stability observed with the wild type protein. However, absence of these bonds substantially decreased the melting temperature of the PitB-derivatives, indicating a stabilizing function of these bonds in PitB of the pneumococcal type 2 pilus.
Introduction: For well over 100 years, meningococcal disease due to serogroup A Neisseria meningitidis (MenA) has caused severe epidemics globally, especially in the meningitis belt of sub-Saharan Africa. Areas covered: The article reviews the background and identification of MenA, the global and molecular epidemiology of MenA, and the outbreaks of MenA in the African meningitis belt. The implementation (2010) of an equitable MenA polysaccharide-protein conjugate vaccine (PsA-TT, MenAfriVac) and the strategy to control MenA in sub-Saharan Africa is described. The development of a novel multi-serogroup meningococcal conjugate vaccine (NmCV-5) that includes serogroup A is highlighted. The PubMed database (1996–2019) was searched for studies relating to MenA outbreaks, vaccine, and immunization strategies; and the Neisseria PubMLST database of 1755 MenA isolates (1915–2019) was reviewed. Expert opinion: Using strategies from the successful MenAfriVac campaign, expanded collaborative partnerships were built to develop a novel, low-cost multivalent component meningococcal vaccine that includes MenA. This vaccine promises greater sustainability and is directed toward global control of meningococcal disease in the African meningitidis belt and beyond. The new WHO global roadmap addresses the continuing problem of bacterial meningitis, including meningococcal vaccine prevention, and provides a framework for further reducing the devastation of MenA.
Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to 8 months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.
by
Kristen W Cohen;
Susanne L Linderman;
Zoe Moodie;
Julie Czartoski;
Lilin Lai;
Grace Mantus;
Carson Norwood;
Lindsay E Nyhoff;
Venkata Viswanadh Edara;
Katharine Floyd;
Stephen C De Rosa;
Hasan Ahmed;
Rachael Whaley;
Shivan N Patel;
Brittany Prigmore;
Maria P Lemos;
Carl Davis;
Sarah Furth;
James O'Keefe;
Mohini P Gharpure;
Sivaram Gunisetty;
Kathy A Stephens;
Rustom Antia;
Veronika I Zarnitsyna;
David Stephens;
Srilatha Edupuganti;
Nadine Rouphael;
Evan Anderson;
Aneesh K Mehta;
Jens Wrammert;
Mehul Suthar;
Rafi Ahmed;
MJ McElrath
Ending the COVID-19 pandemic will require long-lived immunity to SARS-CoV-2. Here, we evaluate 254 COVID-19 patients longitudinally up to eight months and find durable broad-based immune responses. SARS-CoV-2 spike binding and neutralizing antibodies exhibit a bi-phasic decay with an extended half-life of >200 days suggesting the generation of longer-lived plasma cells. SARS-CoV-2 infection also boosts antibody titers to SARS-CoV-1 and common betacoronaviruses. In addition, spike-specific IgG+ memory B cells persist, which bodes well for a rapid antibody response upon virus re-exposure or vaccination. Virus-specific CD4+ and CD8+ T cells are polyfunctional and maintained with an estimated half-life of 200 days. Interestingly, CD4+ T cell responses equally target several SARS-CoV-2 proteins, whereas the CD8+ T cell responses preferentially target the nucleoprotein, highlighting the potential importance of including the nucleoprotein in future vaccines. Taken together, these results suggest that broad and effective immunity may persist long-term in recovered COVID-19 patients.
Neisseria meningitidis is transmitted through the inhalation of large human respiratory droplets, but the risk from contaminated environmental surfaces is controversial. Compared to Streptococcus pneumoniae and Acinetobacter baumanni, meningococcal viability after desiccation on plastic, glass or metal surfaces decreased rapidly; but viable meningococci were present for up to 72 hours. Encapsulation did not provide an advantage for meningococcal environmental survival on environmental surfaces.