by
Jose A. Bazan;
Yih-Ling Tzeng;
Katarina M. Bischof;
Sarah W. Satola;
David Stephens;
Jennifer L. Edwards;
Alexandria Carter;
Brandon Snyder;
Abigail Norris Turner
The US Neisseria meningitidis urethritis clade (US_NmUC) harbors gonococcal deoxyribonucleic acid alleles and causes gonorrhea-like urogenital tract disease. A large convenience sample of US_NmUC isolates (N = 122) collected between January 2015 and December 2019 in Columbus, Ohio demonstrated uniform susceptibility to antibiotics recommended for gonorrhea treatment and meningococcal chemoprophylaxis.
by
Kirsten E. Lyke;
Robert L. Atmar;
Clara Dominguez Islas;
Christine M. Posavad;
Meagan E. Deming;
Angela R. Branche;
Christine Johnston;
Hana M. El Sahly;
Srilatha Edupuganti;
Mark Mulligan;
Lisa A. Jackson;
Richard E. Rupp;
Christina Rostad;
Rhea N. Coler;
Martin Bäcker;
Angelica C. Kottkamp;
Tara M. Babu;
David Dobrzynski;
Judith M. Martin;
Rebecca C. Brady;
Robert W. Frenck;
Kumaravel Rajakumar;
Karen Kotloff;
Nadine Rouphael;
Daniel Szydlo;
Rahul PaulChoudhury;
Janet I. Archer;
Sonja Crandon;
Brian Ingersoll;
Amanda Eaton;
Elizabeth R. Brown;
M. Juliana McElrath;
Kathleen M. Neuzil;
David Stephens;
Diane J. Post;
Bob C. Lin;
Leonid Serebryannyy;
John H. Beigel;
David C. Montefiori;
Paul C. Roberts;
Evan Anderson;
Daniel Graciaa;
Mehul Suthar
As part of a multicenter study evaluating homologous and heterologous COVID-19 booster vaccines, we assessed the magnitude, breadth, and short-term durability of binding and pseudovirus-neutralizing antibody (PsVNA) responses following a single booster dose of NVX-CoV2373 in adults primed with either Ad26.COV2.S, mRNA-1273, or BNT162b2 vaccines. NVX-CoV2373 as a heterologous booster was immunogenic and associated with no safety concerns through Day 91. Fold-rises in PsVNA titers from baseline (Day 1) to Day 29 were highest for prototypic D614G variant and lowest for more recent Omicron sub-lineages BQ.1.1 and XBB.1. Peak humoral responses against all SARS-CoV-2 variants were lower in those primed with Ad26.COV2.S than with mRNA vaccines. Prior SARS CoV-2 infection was associated with substantially higher baseline PsVNA titers, which remained elevated relative to previously uninfected participants through Day 91. These data support the use of heterologous protein-based booster vaccines as an acceptable alternative to mRNA or adenoviral-based COVID-19 booster vaccines. This trial was conducted under ClinicalTrials.gov: NCT04889209.
In Streptococcus pneumoniae (Spn), the 5.4 to 5.5 kb Macrolide Genetic Assembly (Mega) encodes an efflux pump (Mef[E]) and a ribosomal protection protein (Mel) conferring antibiotic resistance to commonly used macrolides in clinical isolates. We found the macrolide-inducible Mega operon provides heteroresistance (more than 8-fold range in MICs) to 14- and 15-membered ring macrolides. Heteroresistance is commonly missed during traditional clinical resistance screens but is highly concerning as resistant subpopulations can persist despite treatment. Spn strains containing the Mega element were screened via Etesting and population analysis profiling (PAP). All Mega-containing Spn strains screened displayed heteroresistance by PAP. The heteroresistance phenotype was linked to the mRNA expression of the mef(E)/mel operon of the Mega element. Macrolide induction uniformly increased Mega operon mRNA expression across the population, and heteroresistance was eliminated. A deletion of the 5' regulatory region of the Mega operon results in a mutant deficient in induction as well as in heteroresistance. The mef(E)L leader peptide sequence of the 5' regulatory region was required for induction and heteroresistance. Treatment with a noninducing 16-membered ring macrolide antibiotic did not induce the mef(E)/mel operon or eliminate the heteroresistance phenotype. Thus, inducibility of the Mega element by 14- and 15-membered macrolides and heteroresistance are linked in Spn. The stochastic variation in mef(E)/mel expression in a Spn population containing Mega provides the basis for heteroresistance.
Macrolide resistance is a major concern in the treatment of Streptococcus pneumoniae. Inducible macrolide resistance in this pneumococcus is mediated by the efflux pump MefE/Mel. We show here that the human antimicrobial peptide LL-37 induces the mefE promoter and confers resistance to erythromycin and LL-37. Such induction may impact the efficacy of host defenses and of macrolide-based treatment of pneumococcal disease.
The antimicrobial efflux system encoded by the operon mef(E)-mel on the mobile genetic element MEGA in Streptococcus pneumoniae and other Gram-positive bacteria is inducible by macrolide antibiotics and antimicrobial peptides. Induction may affect the clinical response to the use of macrolides. We developed mef(E) reporter constructs and a disk diffusion induction and resistance assay to determine the kinetics and basis of mef(E)-mel induction. Induction occurred rapidly, with a >15-fold increase in transcription within 1 h of exposure to subinhibitory concentrations of erythromycin. A spectrum of environmental conditions, including competence and nonmacrolide antibiotics with distinct cellular targets, did not induce mef(E). Using 16 different structurally defined macrolides, induction was correlated with the amino sugar attached to C-5 of the macrolide lactone ring, not with the size (e.g., 14-, 15- or 16-member) of the ring or with the presence of the neutral sugar cladinose at C-3. Macrolides with a monosaccharide attached to C-5, known to block exit of the nascent peptide from the ribosome after the incorporation of up to eight amino acids, induced mef(E) expression. Macrolides with a C-5 disaccharide, which extends the macrolide into the ribosomal exit tunnel, disrupting peptidyl transferase activity, did not induce it. The induction of mef(E) did not require macrolide efflux, but the affinity of macrolides for the ribosome determined the availability for efflux and pneumococcal susceptibility. The induction of mef(E)-mel expression by inducing macrolides appears to be based on specific interactions of the macrolide C-5 saccharide with the ribosome that alleviate transcriptional attenuation of mef(E)-mel.
Background: Red blood cell (RBC) transfusions are a common, life-saving therapy for many patients, but they have also been associated with poor clinical outcomes. We identified unusual, pleomorphic structures in human RBC transfusion units by negative-stain electron microscopy that appeared identical to those previously reported to be bacteria in healthy human blood samples. The presence of viable, replicating bacteria in stored blood could explain poor outcomes in transfusion recipients and have major implications for transfusion medicine. Here, we investigated the possibility that these structures were bacteria.
Results: Flow cytometry, miRNA analysis, protein analysis, and additional electron microscopy studies strongly indicated that the pleomorphic structures in the supernatant of stored RBCs were RBC-derived microparticles (RMPs). Bacterial 16S rDNA PCR amplified from these samples were sequenced and was found to be highly similar to species that are known to commonly contaminate laboratory reagents.
Conclusions: These studies suggest that pleomorphic structures identified in human blood are RMPs and not bacteria, and they provide an example in which laboratory contaminants may can mislead investigators.
by
Yih-Ling Tzeng;
Soma Sannigrahi;
Zachary Berman;
Emily Bourne;
Jennifer L. Edwards;
Jose A. Bazan;
Abigail Norris Turner;
James W. B. Moir;
David Stephens
Neisseria meningitidis historically has been an infrequent and sporadic cause of urethritis and other urogenital infections. However, a nonencapsulated meningococcal clade belonging to the hyperinvasive clonal complex 11.2 lineage has recently emerged and caused clusters of urethritis cases in the United States and other countries. One of the genetic signatures of the emerging N. meningitidis urethritis clade (NmUC) is a chromosomal gene conversion event resulting in the acquisition of the Neisseria gonorrhoeae denitrification apparatus-the N. gonorrhoeae alleles encoding the nitrite reductase AniA, the nitric oxide (NO) reductase NorB, and the intergenic promoter region. The biological importance of the N. gonorrhoeae AniA-NorB for adaptation of the NmUC to a new environmental niche is investigated herein. We found that oxygen consumption, nitrite utilization, and NO production were significantly altered by the conversion event, resulting in different denitrifying aerobic and microaerobic growth of the clade. Further, transcription of aniA and norB in NmUC isolates differed from canonical N. meningitidis, and important polymorphisms within the intergenic region, which influenced aniA promoter activity of the NmUC, were identified. The contributions of three known meningococcal regulators (NsrR, FNR, and NarQP) in controlling the denitrification pathway and endogenous NO metabolism were distinct. Overall, transcription of aniA was dampened relative to canonical N. meningitidis, and this correlated with the lower NO accumulation in the clade. Denitrification and microaerobic respiration were bolstered, and protection against host-derived NO was likely enhanced. The acquisition of the N. gonorrhoeae denitrification pathway by the NmUC supports the clade's adaptation and survival in a microaerobic urogenital environment.
Multidrug resistance in Streptococcus pneumoniae (or pneumococcus) continues to be a global challenge. An important class of antibiotic resistance determinants disseminating in S. pneumoniae are >20-kb Tn916-related integrative and conjugative elements (ICEs), such as Tn2009, Tn6002, and Tn2010. Although conjugation has been implicated as the transfer mechanism for ICEs in several bacteria, including S. pneumoniae, the molecular basis for widespread dissemination of pneumococcal Tn916-related ICEs remains to be fully elucidated. We found that Tn2009 acquisition was not detectable via in vitro transformation nor conjugative mating with donor GA16833, yielding a transfer frequency of <10-7. GA16833 Tn2009 conjugative gene expression was not significantly induced, and ICE circular intermediate formation was not detected in biofilms. Consistently, Tn2009 transfer efficiency in biofilms was not affected by deletion of the ICE conjugative gene ftsK. However, GA16833 Tn2009 transfer occurred efficiently at a recombination frequency (rF) of 10-4 in dual-strain biofilms formed in a human nasopharyngeal cell bioreactor. DNase I addition and deletions of the early competence gene comE or transformation apparatus genes comEA and comEC in the D39 recipient strain prevented Tn2009 acquisition (rF of <10-7). Genome sequencing and single nucleotide polymorphism analyses of independent recombinants of recipient genotype identified ~33- to ~55-kb donor DNAs containing intact Tn2009, supporting homologous recombination. Additional pneumococcal donor and recipient combinations were demonstrated to efficiently transfer Tn916-related ICEs at a rF of 10-4 in the biofilms. Tn916-related ICEs horizontally disseminate at high frequency in human nasopharyngeal S. pneumoniae biofilms by transformation and homologous recombination of >30-kb DNA fragments into the pneumococcal genome.
Introduction: For well over 100 years, meningococcal disease due to serogroup A Neisseria meningitidis (MenA) has caused severe epidemics globally, especially in the meningitis belt of sub-Saharan Africa. Areas covered: The article reviews the background and identification of MenA, the global and molecular epidemiology of MenA, and the outbreaks of MenA in the African meningitis belt. The implementation (2010) of an equitable MenA polysaccharide-protein conjugate vaccine (PsA-TT, MenAfriVac) and the strategy to control MenA in sub-Saharan Africa is described. The development of a novel multi-serogroup meningococcal conjugate vaccine (NmCV-5) that includes serogroup A is highlighted. The PubMed database (1996–2019) was searched for studies relating to MenA outbreaks, vaccine, and immunization strategies; and the Neisseria PubMLST database of 1755 MenA isolates (1915–2019) was reviewed. Expert opinion: Using strategies from the successful MenAfriVac campaign, expanded collaborative partnerships were built to develop a novel, low-cost multivalent component meningococcal vaccine that includes MenA. This vaccine promises greater sustainability and is directed toward global control of meningococcal disease in the African meningitidis belt and beyond. The new WHO global roadmap addresses the continuing problem of bacterial meningitis, including meningococcal vaccine prevention, and provides a framework for further reducing the devastation of MenA.
Purpose of review Neisseria meningitidis (Nm) is primarily associated with asymptomatic nasopharyngeal carriage and invasive meningococcal disease (sepsis and meningitis), but like N. gonorrhoea (Ng), Nm can colonize urogenital and rectal mucosal surfaces and cause disease. First noted in 2015, but with origins in 2011, male urethritis clusters caused by a novel Nm clade were reported in the USA (the US_NmUC). This review describes research developments that characterize this urogenital-tropic Nm. Recent findings The US_NmUC evolved from encapsulated Nm serogroup C strains. Loss of capsule expression, lipooligosaccharide (LOS) sialylation, genetic acquisition of gonococcal alleles (including the gonococcal anaerobic growth aniA/norB cassette), antimicrobial peptide heteroresistance and high surface expression of a unique factor-H-binding protein, can contribute to the urethra-tropic phenotype. Loss-of-function mutations in mtrC are overrepresented in clade isolates. Similar to Ng, repeat US_NmUC urethritis episodes can occur. The US_NmUC is now circulating in the UK and Southeast Asia. Genomic sequencing has defined the clade and rapid diagnostic tests are being developed for surveillance. Summary The US_NmUC emerged as a cause of urethritis due to acquisition of gonococcal genetic determinants and phenotypic traits that facilitate urogenital tract infection. The epidemiology and pathogenesis of this urogenital-tropic pathogen continues to be defined.