The white-throated sparrow (Zonotrichia albicollis) represents a powerful model in behavioral neuroendocrinology because it occurs in two plumage morphs that differ with respect to steroid-dependent social behaviors. Birds of the white-striped (WS) morph engage in more territorial aggression than do birds of the tan-striped (TS) morph, and the TS birds engage in more parenting behavior. This behavioral polymorphism is caused by a chromosomal inversion that has captured many genes, including estrogen receptor alpha (ERα). In this study, we tested the hypothesis that morph differences in aggression might be explained by differential sensitivity to estradiol (E2). We administered E2 non-invasively to non-breeding white-throated sparrows and quantified aggression toward a conspecific 10 min later. E2 administration rapidly increased aggression in WS birds but not TS birds, consistent with our hypothesis that differential sensitivity to E2 may at least partially explain morph differences in aggression. To query the site of E2 action in the brain, we administered E2 and quantified Egr-1 expression in brain regions in which expression of ERα is known to differ between the morphs. E2 treatment decreased Egr-1 immunoreactivity in nucleus taeniae of the amygdala, but this effect did not depend on morph. Overall, our results support a role for differential effects of E2 on aggression in the two morphs, but more research will be needed to determine the neuroanatomical site of action.
17β-estradiol (E2) has numerous rapid effects on the brain and behavior. This review focuses on the rapid effects of E2 on aggression, an important social behavior, in songbirds. First, we highlight the contributions of studies on song sparrows, which reveal that seasonal changes in the environment profoundly influence the capacity of E2 to rapidly alter aggressive behavior. E2 administration to male song sparrows increases aggression within 20 min in the non-breeding season, but not in the breeding season. Furthermore, E2 rapidly modulates several phosphoproteins in the song sparrow brain. In particular, E2 rapidly affects pCREB in the medial preoptic nucleus, in the non-breeding season only. Second, we describe studies of the white-throated sparrow, which reveal how a genetic polymorphism may influence the rapid effects of E2 on aggression. In this species, a chromosomal rearrangement that includes ESR1, which encodes estrogen receptor α (ERα), affects ERα expression in the brain and the ability of E2 to rapidly promote aggression. Third, we summarize studies showing that aggressive interactions rapidly affect levels of E2 and other steroids, both in the blood and in specific brain regions, and the emerging potential for steroid profiling by liquid chromatography tandem mass spectrometry (LC-MS/MS). Such studies of songbirds demonstrate the value of an ethologically informed approach, in order to reveal how steroids act rapidly on the brain to alter naturally-occurring behavior.
Sensory responses to courtship signals can be altered by reproductive hormones. In seasonally-breeding female songbirds, for example, sound-induced immediate early gene expression in the auditory pathway is selective for male song over behaviourally irrelevant sounds only when plasma oestradiol reaches breeding-like levels. This selectivity has been hypothesised to be mediated by the release of monoaminergic neuromodulators in the auditory pathway. We previously showed that in oestrogen-primed female white-throated sparrows, exposure to male song induced dopamine and serotonin release in auditory regions. To mediate hormone-dependent selectivity, this release must be (i) selective for song and (ii) modulated by endocrine state. Therefore, in the present study, we addressed both questions by conducting playbacks of song or a control sound to females in a breeding-like or a nonbreeding endocrine state. We then used high-performance liquid chromatography to measure turnover of dopamine, norepinephrine and serotonin in the auditory midbrain and forebrain. We found that sound-induced turnover of dopamine and serotonin depended on endocrine state; hearing sound increased turnover in the auditory forebrain only in the birds in a breeding-like endocrine state. Contrary to our expectations, these increases occurred in response to either song or artificial tones; in other words, they were not selective for song. The selectivity of sound-induced monoamine release was thus strikingly different from that of immediate early gene responses described in previous studies. We did, however, find that constitutive monoamine release was altered by endocrine state; irrespective of whether the birds heard sound or not, turnover of serotonin in the auditory forebrain was higher in a breeding-like state than in a nonbreeding endocrine state. The results of the present study suggest that dopaminergic and serotonergic responses to song and other sounds, as well as serotonergic tone in auditory areas, could be seasonally modulated.
Our understanding of the biological basis of aggression in all vertebrates, including humans, has been built largely upon discoveries first made in birds. A voluminous literature now indicates that hormonal mechanisms are shared between humans and a number of avian species. Research on genetics mechanisms in birds has lagged behind the more typical laboratory species because the necessary tools have been lacking until recently. Over the past 30 years, three major technical advances have propelled forward our understanding of the hormonal, neural, and genetic bases of aggression in birds: (1) the development of assays to measure plasma levels of hormones in free-living individuals, or "field endocrinology"; (2) the immunohistochemical labeling of immediate early gene products to map neural responses to social stimuli; and (3) the sequencing of the zebra finch genome, which makes available a tremendous set of genomic tools for studying gene sequences, expression, and chromosomal structure in species for which we already have large datasets on aggressive behavior. This combination of hormonal, neuroendocrine, and genetic tools has established songbirds as powerful models for understanding the neural basis and evolution of aggression in vertebrates. In this chapter, we discuss the contributions of field endocrinology toward a theoretical framework linking aggression with sex steroids, explore evidence that the neural substrates of aggression are conserved across vertebrate species, and describe a promising new songbird model for studying the molecular genetic mechanisms underlying aggression.
Behaviors associated with breeding are seasonally modulated in a variety of species. These changes in behavior are mediated by sex steroids, levels of which likewise vary with season. The effects of androgens on behaviors associated with breeding may in turn be partly mediated by the nonapeptides vasopressin (VP) and oxytocin (OT) in mammals, and vasotocin (VT) in birds. The effects of testosterone (T) on production of these neuropeptides have been well-studied; however, the regulation of VT receptors by T is not well understood. In this study, we investigated steroid-dependent regulation of VT receptor (VTR) mRNA in a seasonally breeding songbird, the white-throated sparrow (Zonotrichia albicollis). We focused on VTR subtypes that have been most strongly implicated in social behavior: V1a and oxytocin-like receptor (OTR). Using in situ hybridization, we show that T-treatment of non-breeding males altered V1a and OTR mRNA expression in several regions associated with seasonal reproductive behaviors. For example, T-treatment increased V1a mRNA expression in the medial preoptic area, bed nucleus of the stria terminalis, and ventromedial hypothalamus. T-treatment also affected both V1a and OTR mRNA expression in nuclei of the song system; some of these effects depended on the presence or absence of a chromosomal rearrangement that affects singing behavior, plasma T, and VT immunolabeling in this species. Overall, our results strengthen evidence that VT helps mediate the behavioral effects of T in songbirds, and suggest that the chromosomal rearrangement in this species may affect the sensitivity of the VT system to seasonal changes in T.