A growing body of evidence suggests that gonadal steroids such as estradiol (E2) alter neural responses not only in brain regions associated with reproductive behavior, but also in sensory areas. Because catecholamine systems are involved in sensory processing and selective attention, and because they are sensitive to E2 in many species, they may mediate the neural effects of E2 in sensory areas. Here, we tested the effects of E2 on catecholaminergic innervation, synthesis, and activity in the auditory system of white-throated sparrows, a seasonally breeding songbird in which E2 promotes selective auditory responses to song. Non-breeding females with regressed ovaries were held on a winter-like photoperiod and implanted with silastic capsules containing either no hormone or E2. In one hemisphere of the brain, we used immunohistochemistry to quantify fibers immunoreactive for tyrosine hydroxylase or dopamine beta-hydroxylase in the auditory forebrain, thalamus, and midbrain. E2 treatment increased catecholaminergic innervation in the same areas of the auditory system in which E2 promotes selectivity for song. In the contralateral hemisphere, we quantified dopamine, norepinephrine and their metabolites in tissue punches using HPLC. Norepinephrine increased in the auditory forebrain, but not the midbrain, after E2 treatment. We found evidence of interhemispheric differences, both in immunoreactivity and catecholamine content did not depend on E2 treatment. Overall, our results show that increases in plasma E2 typical of the breeding season enhance catecholaminergic innervation and synthesis in some parts of the auditory system, raising the possibility that catecholamines play a role in E2-dependent auditory plasticity in songbirds.
Because no organism lives in an unchanging environment, sensory processes must remain plastic so that in any context, they emphasize the most relevant signals. As the behavioral relevance of sociosexual signals changes along with reproductive state, the perception of those signals is altered by reproductive hormones such as estradiol (E2). We showed previously that in white-throated sparrows, immediate early gene responses in the auditory pathway of females are selective for conspecific male song only when plasma E2 is elevated to breeding-typical levels. In this study, we looked for evidence that E2-dependent modulation of auditory responses is mediated by serotonergic systems. In female nonbreeding white-throated sparrows treated with E2, the density of fibers immunoreactive for serotonin transporter innervating the auditory midbrain and rostral auditory forebrain increased compared with controls. E2 treatment also increased the concentration of the serotonin metabolite 5-HIAA in the caudomedial mesopallium of the auditory forebrain. In a second experiment, females exposed to 30 min of conspecific male song had higher levels of 5-HIAA in the caudomedial nidopallium of the auditory forebrain than birds not exposed to song. Overall, we show that in this seasonal breeder, (1) serotonergic fibers innervate auditory areas; (2) the density of those fibers is higher in females with breeding-typical levels of E2 than in nonbreeding, untreated females; and (3) serotonin is released in the auditory forebrain within minutes in response to conspecific vocalizations. Our results are consistent with the hypothesis that E2 acts via serotonin systems to alter auditory processing.
The white-throated sparrow is rapidly becoming an important model in the genetics of social behavior because of a chromosomal rearrangement that segregates with a behavioral phenotype. Within a population, 50 % of individuals are heterozygous for a rearranged chromosome 2 (ZAL2m). These birds sing more and are more aggressive than the other 50 %, who lack the rearrangement. A disassortative mating system, in which heterozygotes almost never interbreed, ensures that ZAL2m/2m homozygotes are extremely rare. Here, we provide the first systematic characterization of such a homozygote, a hatch-year female. Her plumage was atypical of her age and sex, resembling that of an adult male. She was extremely vocal and aggressive, dominating her opponents in behavioral tests. Her phenotype was thus an exaggerated version of a typical ZAL2/2m heterozygote, supporting the hypothesis that alleles inside the ZAL2m rearrangement confer high aggression and further emphasizing this species’ value as a model of social behavior.
In white-throated sparrows, two alternative morphs differing in plumage and behavior segregate with a large chromosomal rearrangement. As with sex chromosomes such as the mammalian Y, the rearranged version of chromosome two (ZAL2m) is in a near-constant state of hetero-zygosity, offering opportunities to investigate both degenerative and selective processes during the early evolutionary stages of ‘supergenes.’ Here, we generated, synthesized, and analyzed extensive genome-scale data to better understand the forces shaping the evolution of the ZAL2 and ZAL2m chromosomes in this species. We found that features of ZAL2m are consistent with substantially reduced recombination and low levels of degeneration. We also found evidence that selective sweeps took place both on ZAL2m and its standard counterpart, ZAL2, after the rearrangement event. Signatures of positive selection were associated with allelic bias in gene expression, suggesting that antagonistic selection has operated on gene regulation. Finally, we discovered a region exhibiting long-range haplotypes inside the rearrangement on ZAL2m. These haplotypes appear to have been maintained by balancing selection, retaining genetic diversity within the supergene. Together, our analyses illuminate mechanisms contributing to the evolution of a young chromosomal polymorphism, revealing complex selective processes acting concurrently with genetic degeneration to drive the evolution of supergenes.
As part of an initiative to improve rigor and reproducibility in biomedical research, the U.S. National Institutes of Health now requires the consideration of sex as a biological variable in preclinical studies. This new policy has been interpreted by some as a call to compare males and females with each other. Researchers testing for sex differences may not be trained to do so, however, increasing risk for misinterpretation of results. Using a list of recently published articles curated by Woitowich et al. (eLife, 2020; 9:e56344), we examined reports of sex differences and non-differences across nine biological disciplines. Sex differences were claimed in the majority of the 147 articles we analyzed; however, statistical evidence supporting those differences was often missing. For example, when a sex-specific effect of a manipulation was claimed, authors usually had not tested statistically whether females and males responded differently. Thus, sex-specific Effects may be over-reported. In contrast, we also encountered practices that could mask sex differences, such as pooling the sexes without first testing for a difference. Our findings support the need for continuing efforts to train researchers how to test for and report sex differences in order to promote rigor and reproducibility in biomedical research.
The white-throated sparrow (Zonotrichia albicollis) offers unique opportunities to understand the adaptive value of supergenes, particularly their role in alternative phenotypes. In this species, alternative plumage morphs segregate with a nonrecombining segment of chromosome 2, which has been called a ‘supergene’. The species mates disassortatively with respect to the supergene; that is, each breeding pair consists of one individual with it and one without it. This species has therefore been called the “bird with four sexes”. The supergene segregates with a behavioral phenotype; birds with it are more aggressive and less parental than birds without it. Here, we review our efforts to identify the genes inside the supergene that are responsible for the behavioral polymorphism. The gene ESR1, which encodes estrogen receptor α, differs between the morphs and predicts both territorial and parental behavior. Variation in the regulatory regions of ESR1 causes an imbalance in expression of the two alleles, and the degree to which this imbalance favors the supergene allele predicts territorial singing. In heterozygotes, knockdown of ESR1 causes a phenotypic switch, from more aggressive to less aggressive. We recently showed that another gene important for social behavior, vasoactive intestinal peptide (VIP), is differentially expressed between the morphs and predicts territorial singing. We hypothesize that ESR1 and VIP contribute to behavior in a coordinated way and could represent co-adapted alleles. Because the supergene contains more than 1000 individual genes, this species provides rich possibilities for discovering alleles that work together to mediate life-history trade-offs and maximize the fitness of alternative complex phenotypes.
Behavioral evolution relies on genetic changes, yet few behaviors can be traced to specific genetic sequences in vertebrates. Here we provide experimental evidence showing that differentiation of a single gene has contributed to the evolution of divergent behavioral phenotypes in the white-throated sparrow, a common backyard songbird. In this species, a series of chromosomal inversions has formed a supergene that segregates with an aggressive phenotype. The supergene has captured ESR1, the gene that encodes estrogen receptor α (ERα); as a result, this gene is accumulating changes that now distinguish the supergene allele from the standard allele. Our results show that in birds of the more aggressive phenotype, ERα knockdown caused a phenotypic change to that of the less aggressive phenotype. We next showed that in a freeliving population, aggression is predicted by allelic imbalance favoring the supergene allele. Finally, we identified cis-regulatory features, both genetic and epigenetic, that explain the allelic imbalance. This work provides a rare illustration of how genotypic divergence has led to behavioral phenotypic divergence in a vertebrate.
Much of our knowledge on regulatory impacts of DNA methylation has come from laboratory-bred model organisms, which may not exhibit the full extent of variation found in wild populations. Here, we investigated naturally-occurring variation in DNA methylation in a wild avian species, the white-throated sparrow (Zonotrichia albicollis). This species offers exceptional opportunities for studying the link between genetic differentiation and phenotypic traits because of a nonrecombining chromosome pair linked to both plumage and behavioural phenotypes. Using novel single-nucleotide resolution methylation maps and gene expression data, we show that DNA methylation and the expression of DNA methyltransferases are significantly higher in adults than in nestlings. Genes for which DNA methylation varied between nestlings and adults were implicated in development and cell differentiation and were located throughout the genome. In contrast, differential methylation between plumage morphs was concentrated in the nonrecombining chromosome pair. Interestingly, a large number of CpGs on the nonrecombining chromosome, localized to transposable elements, have undergone dramatic loss of DNA methylation since the split of the ZAL2 and ZAL2m chromosomes. Changes in methylation predicted changes in gene expression for both chromosomes. In summary, we demonstrate changes in genome-wide DNA methylation that are associated with development and with specific functional categories of genes in white-throated sparrows. Moreover, we observe substantial DNA methylation reprogramming associated with the suppression of recombination, with implications for genome integrity and gene expression divergence. These results offer an unprecedented view of ongoing epigenetic reprogramming in a wild population.
Many seasonally-breeding species use daylength to time reproduction. Light-induced release of progonadal hormones involves a complex cascade of responses both inside and outside the brain. In this study, we used induction of early growth response 1 (Egr-1), the protein product of an immediate early gene, to evaluate the time course of such responses in male white-throated sparrows (Zonotrichia albicollis) exposed to a single long day. Induction of Egr-1 in the pars tuberalis began ∼11 h after dawn. This response was followed ∼6 h later by dramatic induction in the tuberal hypothalamus, including in the ependymal cells lining the third ventricle. At approximately the same time, Egr-1 was induced in dopaminergic and vasoactive intestinal peptide neurons in the tuberal hypothalamus and in dopaminergic neurons of the premammillary nucleus. We noted no induction in gonadotropin-releasing hormone (GnRH) neurons until 2 h after dawn the following morning. Overall, our results indicate that Egr-1 responses in GnRH neurons occur rather late during photostimulation, compared with responses in other cell populations, and that such induction may reflect new synthesis related to GnRH depletion rather than stimulation by light cues.
In the white-throated sparrow (Zonotrichia albicollis), the second chromosome bears a striking resemblance to sex chromosomes. First, within each breeding pair of birds, one bird is homozygous for the standard arrangement of the chromosome (ZAL2/ZAL2) and its mate is heterozygous for a different version (ZAL2/ZAL2 m ). Second, recombination is profoundly suppressed between the two versions, leading to genetic differentiation between them. Third, the ZAL2 m version is linked with phenotypic traits, such as bright plumage, high aggression, and low parental behavior, which are usually associated with males. These similarities to sex chromosomes suggest that the evolutionary mechanisms that shape sex chromosomes, in particular genetic degeneration of the heterogametic version due to the suppression of recombination, are likely important in this system as well. Here, we investigated patterns of protein sequence evolution and gene expression evolution between the ZAL2 and ZAL2 m chromosomes by whole-genome sequencing and transcriptome analyses. Patterns of protein evolution exhibited only weak signals of genetic degeneration, and few genes harbored signatures of positive selection. We found substantial evidence of transcriptome evolution, such as significant expression divergence between ZAL2 and ZAL2 m alleles and signatures of dosage compensation for highly expressed genes. These results suggest that, early in the evolution of heteromorphic chromosomes, gene expression divergence and dosage compensation can prevail before large-scale genetic degeneration. Our results show further that suppression of recombination between heteromorphic chromosomes can lead to the evolution of alternative (sex-like) behavioral phenotypes before substantial genetic degeneration.