by
Stephen J. Klawa;
Michelle Lee;
Kyle D. Riker;
Tengyue Jian;
Qunzhao Wang;
Yuan Gaoo;
Margaret L. Daly;
Shreeya Bhonge;
W. Seth Childers;
Tolulope O. Omosun;
Anil Mehta;
David Lynn;
Ronit Freeman
In neurodegenerative diseases, polymorphism and supramolecular assembly of β-sheet amyloids are implicated in many different etiologies and may adopt either a left- or right-handed supramolecular chirality. Yet, the underlying principles of how sequence regulates supramolecular chirality remains unknown. Here, we characterize the sequence specificity of the central core of amyloid-β 42 and design derivatives which enable chirality inversion at biologically relevant temperatures. We further find that C-terminal modifications can tune the energy barrier of a left-to-right chiral inversion. Leveraging this design principle, we demonstrate how temperature-triggered chiral inversion of peptides hosting therapeutic payloads modulates the dosed release of an anticancer drug. These results suggest a generalizable approach for fine-tuning supramolecular chirality that can be applied in developing treatments to regulate amyloid morphology in neurodegeneration as well as in other disease states.
Defining pathways for amyloid assembly could impact therapeutic strategies for as many as 50 disease states. Here we show that amyloid assembly is subject to different forces regulating nucleation and propagation steps and provide evidence that the more global β-sheet/β-sheet facial complementarity is a critical determinant for amyloid nucleation and structural selection.
by
Corey J. Wilson;
Andreas S. Bommarius;
Julie A. Champion;
Yury O. Chernoff;
David Lynn;
Anant K. Paravastu;
Chen Liang;
Ming-Chien Hsieh;
Jennifer Heemstra
Biomolecular assembly is a key driving force in nearly all life processes, providing structure, information storage, and communication within cells and at the whole organism level. These assembly processes rely on precise interactions between functional groups on nucleic acids, proteins, carbohydrates, and small molecules, and can be fine-tuned to span a range of time, length, and complexity scales. Recognizing the power of these motifs, researchers have sought to emulate and engineer biomolecular assemblies in the laboratory, with goals ranging from modulating cellular function to the creation of new polymeric materials. In most cases, engineering efforts are inspired or informed by understanding the structure and properties of naturally occurring assemblies, which has in turn fueled the development of predictive models that enable computational design of novel assemblies. This Review will focus on selected examples of protein assemblies, highlighting the story arc from initial discovery of an assembly, through initial engineering attempts, toward the ultimate goal of predictive design. The aim of this Review is to highlight areas where significant progress has been made, as well as to outline remaining challenges, as solving these challenges will be the key that unlocks the full power of biomolecules for advances in technology and medicine.
by
Alexandra W. Fuller;
Phoebe Young;
B. DanieL Pierce;
Jamie Kitson-Finuff;
Purvi Jain;
Karl Schneider;
Stephen Lazar;
Olga Taran;
Andrew G. Palmer;
David Lynn
The rhizosphere, the narrow zone of soil around plant roots, is a complex network of interactions between plants, bacteria, and a variety of other organisms. The absolute dependence on host-derived signals, or xenognosins, to regulate critical developmental checkpoints for host commitment in the obligate parasitic plants provides a window into the rhizosphere’s chemical dynamics. These sessile intruders use H2O2 in a process known as semagenesis to chemically modify the mature root surfaces of proximal host plants and generate p-benzoquinones (BQs). The resulting redox-active signaling network regulates the spatial and temporal commitments necessary for host attachment. Recent evidence from non-parasites, including Arabidopsis thaliana, establishes that reactive oxygen species (ROS) production regulates similar redox circuits related to root recognition, broadening xenognosins’ role beyond the parasites. Here we compare responses to the xenognosin dimethoxybenzoquinone (DMBQ) between the parasitic plant Striga asiatica and the non-parasitic A. thaliana. Exposure to DMBQ simulates the proximity of a mature root surface, stimulating an increase in cytoplasmic Ca2+ concentration in both plants, but leads to remarkably different phenotypic responses in the parasite and non-parasite. In S. asiatica, DMBQ induces development of the host attachment organ, the haustorium, and decreases ROS production at the root tip, while in A. thaliana, ROS production increases and further growth of the root tip is arrested. Obstruction of Ca2+ channels and the addition of antioxidants both lead to a decrease in the DMBQ response in both parasitic and non-parasitic plants. These results are consistent with Ca2+ regulating the activity of NADPH oxidases, which in turn sustain the autocatalytic production of ROS via an external quinone/hydroquinone redox cycle. Mechanistically, this chemistry is similar to black and white photography with the emerging dynamic reaction-diffusion network laying the foundation for the precise temporal and spatial control underlying rhizosphere architecture.
Truncated and mutated amyloid-β (Aβ) peptides are models for systematic study-in homogeneous preparations-of the molecular origins of metal ion effects on Aβ aggregation rates, types of aggregate structures formed, and cytotoxicity. The 3D geometry of bis-histidine imidazole coordination of CuII in fibrils of the nonapetide acetyl-Aβ(13-21)H14A has been determined by powder 14N electron spin echo envelope modulation (ESEEM) spectroscopy. The method of simulation of the anisotropic combination modulation is described and benchmarked for a CuII-bis-cis-imidazole complex of known structure. The revealed bis-cis coordination mode, and the mutual orientation of the imidazole rings, for CuII in Ac-Aβ(13-21)H14A fibrils are consistent with the proposed β-sheet structural model and pairwise peptide interaction with CuII, with an alternating [-metal-vacancy-]n pattern, along the N-terminal edge. Metal coordination does not significantly distort the intra-β-strand peptide interactions, which provides a possible explanation for the acceleration of Ac-Aβ(13-21)H14A fibrillization by CuII, through stabilization of the associated state and low-reorganization integration of β-strand peptide pair precursors.
by
Christella Gordon-Kim;
Allisandra Rha;
George A Poppitz;
Jillian Smith-Carpenter;
Regina Luu;
Alexis B Roberson;
Russell Conklin;
Alexis Blake;
David Lynn
The Central Dogma highlights the mutualistic functions of protein and nucleic acid biopolymers, and this synergy appears prominently in the membraneless organelles widely distributed throughout prokaryotic and eukaryotic organisms alike. Ribonucleoprotein granules (RNPs), which are complex coacervates of RNA with proteins, are a prime example of these membranelles organelles and underly multiple essential cellular functions. Inspired by the highly dynamic character of these organelles and the recent studies that ATP both inhibits and templates phase separation of the fused in sarcoma (FUS) protein implicated in several neurodegenerative diseases, we explored the RNA templated ordering of a single motif of the Aβ peptide of Alzheimer’s disease. We now know that this strong cross-β propensity motif alone assembles through a liquid-like coacervate phase that can be externally templated to form distinct supramolecular assemblies. Now we provide evidence that structured phosphates, ranging from complex structures like double stranded and quadraplex DNA to simple trimetaphosphate, differentially impact the liquid to solid phase transition necessary for paracrystalline assembly. The results from this simple model illustrate the potential of ordered environmental templates in the transition to potentially irreversible pathogenic assemblies and provides insight into the ordering dynamics necessary for creating functional synthetic polymer co-assemblies.
Semagenesis, the process of signal generation, is a novel signaling strategy first uncovered within the parasitic plants. Recent evidence suggests that the parasite's production of reactive oxygen species (ROS) has been focused externally to exploit the host's innate immunity. Here we use the inducer identified from decoding semagenesis, as well as other signaling strategies of the parasitic plants, to synchronize host commitments of Striga asiatica and reveal the molecular events that control plant development.
Vast arrays of structural forms are accessible to simple amyloid peptides and environmental conditions can direct assembly into single phases. These insights are now being applied to the aggregation of the Aβ peptide of Alzheimer's disease and the identification of causative phases. We extend use of the imaging agent Pittsburgh compound B to discriminate among Aβ phases and begin to define conditions of relevance to the disease state. Also, we specifically highlight the development of methods for defining the structures of these more complex phases.
by
Jijun Dong;
Jeffrey M. Canfield;
Anil Mehta;
Jacob E. Shokes;
Bo Tian;
W. Seth Childers;
James A. Simmons;
Zixu Mao;
Robert A. Scott;
Kurt Warncke;
David Lynn
Protein and peptide assembly into amyloid has been implicated in functions that range from beneficial epigenetic controls to pathological etiologies. However, the exact structures of the assemblies that regulate biological activity remain poorly defined. We have previously used Zn2+ to modulate the assembly kinetics and morphology of congeners of the amyloid β peptide (Aβ) associated with Alzheimer's disease. We now reveal a correlation among Aβ-Cu2+ coordination, peptide self-assembly, and neuronal viability. By using the central segment of Aβ, HHQKLVFFA or Aβ(13–21), which contains residues H13 and H14 implicated in Aβ-metal ion binding, we show that Cu2+ forms complexes with Aβ(13–21) and its K16A mutant and that the complexes, which do not self-assemble into fibrils, have structures similar to those found for the human prion protein, PrP. N-terminal acetylation and H14A substitution, Ac-Aβ(13–21)H14A, alters metal coordination, allowing Cu2+ to accelerate assembly into neurotoxic fibrils. These results establish that the N-terminal region of Aβ can access different metal-ion-coordination environments and that different complexes can lead to profound changes in Aβ self-assembly kinetics, morphology, and toxicity. Related metal-ion coordination may be critical to the etiology of other neurodegenerative diseases.
Metal ions (Zn(II)) are demonstrated as probes of amyloid structure in simple segments of the Aβ peptide, Aβ(13−21). By restricting the possible metal binding sites to His13/His14 dyad, we show that Zn2+ can specifically control the rate of self-assembly and dramatically regulate amyloid morphology via distinct coordination environments as characterized by X-ray absorption spectroscopy. The data establish that the single His13 is sufficient to coordinate Zn2+ productively for typical amyloid fiber formation, while a distinct Zn2+ coordination environment can be accessed in the presence of His13/Hi14 dyad to stabilize sheet/sheet associations and the transition to a ribbon/tube morphology.