Background: Maternal exposure to traffic-related air pollution during pregnancy has been shown to increase the risk of adverse birth outcomes and childhood disorders. High-resolution metabolomics (HRM) has previously been employed to identify metabolic responses to traffic-related air pollution in adults, including pregnant women. Thus far, no studies have examined metabolic effects of air pollution exposure in utero on neonates. Methods: We retrieved stored neonatal blood spots for 241 children born in California between 1998 and 2007. These children were randomly selected from all California birth rolls to serve as birth-year matched controls for children with retinoblastoma identified from the California cancer registry for a case control study of childhood cancer. We estimated prenatal traffic-related air pollution exposure (particulate matter less than 2.5 μm (PM2.5)) during the third-trimester using the California Line Source Dispersion Model, version 4 (CALINE4) based on residential addresses recorded at birth. We employed untargeted HRM to obtain metabolic profiles, and metabolites associated with air pollution exposure were identified using partial least squares (PLS) regression and linear regressions. Biological effects were characterized using pathway enrichment analyses adjusting for potential confounders including maternal age, race/ethnicity, and education. Results: In total we extracted 4038 and 4957 metabolite features from neonatal blood spots in hydrophilic interaction (HILIC) chromatography (positive ion mode) and C18 reverse phase columns (negative ion mode), respectively. After controlling for confounding factors, partial least square regression (Variable Importance in Projection (VIP) ≥ 2) selected 402 HILIC positive and 182 C18 negative features as statistically significantly associated with increasing third trimester PM2.5 exposure. Using pathway enrichment analysis, we identified metabolites in oxidative stress and inflammation pathways as being altered, primarily involving lipid metabolism. Conclusion: The metabolite features and pathways associated with air pollution exposure in neonates suggest that maternal exposure during late pregnancy contributes to oxidative stress and inflammation in newborn children.
Background: Unravelling the relationships between candidate genes and autism spectrum disorder (ASD) phenotypes remains an outstanding challenge. Endophenotypes, defined as inheritable, measurable quantitative traits, might provide intermediary links between genetic risk factors and multifaceted ASD phenotypes. In this study, we sought to determine whether plasma metabolite levels could serve as endophenotypes in individuals with ASD and their family members. Methods: We employed an untargeted, high-resolution metabolomics platform to analyse 14,342 features across 1099 plasma samples. These samples were collected from probands and their family members participating in the Autism Genetic Resource Exchange (AGRE) (N = 658), compared with neurotypical individuals enrolled in the PrecisionLink Health Discovery (PLHD) program at Boston Children's Hospital (N = 441). We conducted a metabolite quantitative trait loci (mQTL) analysis using whole-genome genotyping data from each cohort in AGRE and PLHD, aiming to prioritize significant mQTL and metabolite pairs that were exclusively observed in AGRE. Findings: Within the AGRE group, we identified 54 significant associations between genotypes and metabolite levels (P < 5.27 × 10−11), 44 of which were not observed in the PLHD group. Plasma glutamine levels were found to be associated with variants in the NLGN1 gene, a gene that encodes post-synaptic cell-adhesion molecules in excitatory neurons. This association was not detected in the PLHD group. Notably, a significant negative correlation between plasma glutamine and glutamate levels was observed in the AGRE group, but not in the PLHD group. Furthermore, plasma glutamine levels showed a negative correlation with the severity of restrictive and repetitive behaviours (RRB) in ASD, although no direct association was observed between RRB severity and the NLGN1 genotype. Interpretation: Our findings suggest that plasma glutamine levels could potentially serve as an endophenotype, thus establishing a link between the genetic risk associated with NLGN1 and the severity of RRB in ASD. This identified association could facilitate the development of novel therapeutic targets, assist in selecting specific cohorts for clinical trials, and provide insights into target symptoms for future ASD treatment strategies. Funding: This work was supported by the National Institute of Health (grant numbers: R01MH107205, U01TR002623, R24OD024622, OT2OD032720, and R01NS129188) and the PrecisionLink Biobank for Health Discovery at Boston Children's Hospital.
Background: The human exposome is composed of diverse metabolites and small chemical compounds originated from endogenous and exogenous sources, respectively. Genetic and environmental factors influence metabolite levels, while the extent of genetic contributions across metabolic pathways is not yet known. Untargeted profiling of human metabolome using high-resolution mass spectrometry (HRMS) combined with genome-wide genotyping allows comprehensive identification of genetically influenced metabolites. As such previous studies of adults discovered and replicated genotype–metabotype associations. However, these associations have not been characterized in children. Results: We conducted the largest genome by metabolome-wide association study to date of children (N = 441) using 619,688 common genetic variants and 14,342 features measured by HRMS. Narrow-sense heritability (h2) estimates of plasma metabolite concentrations using genomic relatedness matrix restricted maximum likelihood (GREML) method showed a bimodal distribution with high h2 (> 0.8) for 15.9% of features and low h2 (< 0.2) for most of features (62.0%). The features with high h2 were enriched for amino acid and nucleic acid metabolism, while carbohydrate and lipid concentrations showed low h2. For each feature, a metabolite quantitative trait loci (mQTL) analysis was performed to identify genetic variants that were potentially associated with plasma levels. Fifty-four associations among 29 features and 43 genetic variants were identified at a genome-wide significance threshold p < 3.5 × 10–12 (= 5 × 10–8/14,342 features). Previously reported associations such as UGT1A1 and bilirubin; PYROXD2 and methyl lysine; and ACADS and butyrylcarnitine were successfully replicated in our pediatric cohort. We found potential candidates for novel associations including CSMD1 and a monostearyl alcohol triglyceride (m/z 781.7483, retention time (RT) 89.3 s); CALN1 and Tridecanol (m/z 283.2741, RT 27.6). A gene-level enrichment analysis using MAGMA revealed highly interconnected modules for dADP biosynthesis, sterol synthesis, and long-chain fatty acid transport in the gene-feature network. Conclusion: Comprehensive profiling of plasma metabolome across age groups combined with genome-wide genotyping revealed a wide range of genetic influence on diverse chemical species and metabolic pathways. The developmental trajectory of a biological system is shaped by gene–environment interaction especially in early life. Therefore, continuous efforts on generating metabolomics data in diverse human tissue types across age groups are required to understand gene–environment interaction toward healthy aging trajectories.
by
Gary Miller;
Douglas Walker;
Y Zhao;
CM Lill;
BR Bloem;
SKL Darweesh;
B Pinto-Pacheco;
B McNeil;
AK Heath;
M Frissen;
D Petrova;
MJ Sánchez;
MD Chirlaque;
M Guevara;
M Zibetti;
S Panico;
L Middleton;
V Katzke;
R Kaaks;
E Riboli;
G Masala;
S Sieri;
R Zamora-Ros;
P Amiano;
M Jenab;
S Peters;
R Vermeulen
Introduction: Lipopolysaccharide (LPS) is the outer membrane component of Gram-negative bacteria. LPS-binding protein (LBP) is an acute-phase reactant that mediates immune responses triggered by LPS and has been used as a blood marker for LPS. LBP has recently been indicated to be associated with Parkinson’s disease (PD) in small-scale retrospective case–control studies. We aimed to investigate the association between LBP blood levels with PD risk in a nested case–control study within a large European prospective cohort. Methods: A total of 352 incident PD cases (55% males) were identified and one control per case was selected, matched by age at recruitment, sex and study center. LBP levels in plasma collected at recruitment, which was on average 7.8 years before diagnosis of the cases, were analyzed by enzyme linked immunosorbent assay. Odds ratios (ORs) were estimated for one unit increase of the natural log of LBP levels and PD incidence by conditional logistic regression. Results: Plasma LBP levels were higher in prospective PD cases compared to controls (median (interquartile range) 26.9 (18.1–41.0) vs. 24.7 (16.6–38.4) µg/ml). The OR for PD incidence per one unit increase of log LBP was elevated (1.46, 95% CI 0.98–2.19). This association was more pronounced among women (OR 2.68, 95% CI 1.40–5.13) and overweight/obese subjects (OR 1.54, 95% CI 1.09–2.18). Conclusion: The findings suggest that higher plasma LBP levels may be associated with an increased risk of PD and may thus pinpoint to a potential role of endotoxemia in the pathogenesis of PD, particularly in women and overweight/obese individuals.
Interstitial fluid (ISF) surrounds the cells and tissues of the body. Since ISF has molecular components similar to plasma, as well as compounds produced locally in tissues, it may be a valuable source of biomarkers for diagnostics and monitoring. However, there has not been a comprehensive study to determine the metabolite composition of ISF and to compare it to plasma. In this study, the metabolome of suction blister fluid (SBF), which largely consists of ISF, collected from 10 human volunteers was analyzed using untargeted high-resolution metabolomics (HRM). A wide range of metabolites were detected in SBF, including amino acids, lipids, nucleotides, and compounds of exogenous origin. Various systemic and skin-derived metabolite biomarkers were elevated or found uniquely in SBF, and many other metabolites of clinical and physiological significance were well correlated between SBF and plasma. In sum, using untargeted HRM profiling, this study shows that SBF can be a valuable source of information about metabolites relevant to human health.
Cadmium (Cd) is a toxic environmental metal that interacts with selenium (Se) and contributes to many lung diseases. Humans have widespread exposures to Cd through diet and cigarette smoking, and studies in rodent models show that Se can protect against Cd toxicities. We sought to identify whether an antagonistic relationship existed between Se and Cd burdens and determine whether this relationship may associate with metabolic variation within human lungs. We performed metabolomics of 31 human lungs, including 25 with end-stage lung disease due to idiopathic pulmonary fibrosis, cystic fibrosis, chronic obstructive lung disease (COPD)/emphysema and other causes, and 6 non-diseased lungs. Results showed pathway associations with Cd including amino acid, lipid and energy-related pathways. Metabolic pathways varying with Se had considerable overlap with these pathways. Hierarchical cluster analysis (HCA) of individuals according to metabolites associated with Cd showed partial separation of disease types, with COPD/emphysema in the cluster with highest Cd, and non-diseased lungs in the cluster with the lowest Cd. When compared to HCA of metabolites associated with Se, the results showed that the cluster containing COPD/emphysema had the lowest Se, and the non-diseased lungs had the highest Se. A greater number of pathway associations occurred for Cd to Se ratio than either Cd or Se alone, indicating that metabolic patterns were more dependent on Cd to Se ratio than on either alone. Network analysis of interactions of Cd and Se showed network centrality was associated with pathways linked to polyunsaturated fatty acids involved in inflammatory signaling. Overall, the data show that metabolic pathway responses in human lung vary with Cd and Se in a pattern suggesting that Se is antagonistic to Cd toxicity in humans.
Exposure to traffic-related pollutants, including diesel exhaust, is associated with increased risk of cardiopulmonary disease and mortality; however, the precise biochemical pathways underlying these effects are not known. To investigate biological response mechanisms underlying exposure to traffic related pollutants, we used an integrated molecular response approach that included high-resolution metabolomic profiling and peripheral blood gene expression to identify biological responses to diesel exhaust exposure. Plasma samples were collected from 73 non-smoking males employed in the US trucking industry between February 2009 and October 2010, and analyzed using untargeted high-resolution metabolomics to characterize metabolite associations with shift- and week-averaged levels of elemental carbon (EC), organic carbon (OC) and particulate matter with diameter ≤ 2.5 μm (PM2.5). Metabolic associations with EC, OC and PM2.5 were evaluated for biochemical processes known to be associated with disease risk. Annotated metabolites associated with exposure were then tested for relationships with the peripheral blood transcriptome using multivariate selection and network correlation. Week-averaged EC and OC levels, which were averaged across multiple shifts during the workweek, resulted in the greatest exposure-associated metabolic alterations compared to shift-averaged exposure levels. Metabolic changes associated with EC exposure suggest increased lipid peroxidation products, biomarkers of oxidative stress, thrombotic signaling lipids, and metabolites associated with endothelial dysfunction from altered nitric oxide metabolism, while OC exposures were associated with antioxidants, oxidative stress biomarkers and critical intermediates in nitric oxide production. Correlation with whole blood RNA gene expression provided additional evidence of changes in processes related to endothelial function, immune response, inflammation, and oxidative stress. We did not detect metabolic associations with PM2.5. This study provides an integrated molecular assessment of human exposure to traffic-related air pollutants that includes diesel exhaust. Metabolite and transcriptomic changes associated with exposure to EC and OC are consistent with increased risk of cardiovascular diseases and the adverse health effects of traffic-related air pollution.
by
Damaskini Valvi;
Douglas Walker;
Thomas Inge;
Scott Bartell;
Todd Jenkins;
Michael Helmrath;
Thomas Ziegler;
Michele A La Merrill;
Sandrah P Eckel;
David Conti;
Yongliang Liang;
Dean Jones;
Rob McConnell;
Leda Chatzi
Background: Advances in untargeted metabolomic technologies have great potential for insight into adverse metabolic effects underlying exposure to environmental chemicals. However, important challenges need to be addressed, including how biological response corresponds to the environmental chemical burden in different target tissues. Aim: We performed a pilot study using state-of-the-art ultra-high-resolution mass spectrometry (UHRMS) to characterize the burden of lipophilic persistent organic pollutants (POPs) in metabolic tissues and associated alterations in the plasma metabolome. Methods: We studied 11 adolescents with severe obesity at the time of bariatric surgery. We measured 18 POPs that can act as endocrine and metabolic disruptors (i.e. 2 dioxins, 11 organochlorine compounds [OCs] and 5 polybrominated diphenyl ethers [PBDEs]) in visceral and subcutaneous abdominal adipose tissue (vAT and sAT), and liver samples using gas chromatography with UHRMS. Biological pathways were evaluated by measuring the plasma metabolome using high-resolution metabolomics. Network and pathway enrichment analysis assessed correlations between the tissue-specific burden of three frequently detected POPs (i.e. p,p’-dichlorodiphenyldichloroethene [DDE], hexachlorobenzene [HCB] and PBDE-47) and plasma metabolic pathways. Results: Concentrations of 4 OCs and 3 PBDEs were quantifiable in at least one metabolic tissue for > 80% of participants. All POPs had the highest median concentrations in adipose tissue, especially sAT, except for PBDE-154, which had comparable average concentrations across all tissues. Pathway analysis showed high correlations between tissue-specific POPs and metabolic alterations in pathways of amino acid metabolism, lipid and fatty acid metabolism, and carbohydrate metabolism. Conclusions: Most of the measured POPs appear to accumulate preferentially in adipose tissue compared to liver. Findings of plasma metabolic pathways potentially associated with tissue-specific POPs concentrations merit further investigation in larger populations.
by
Jesse A Goodrich;
Tanya L Alderete;
Brittney O Baumert;
Kiros Berhane;
Zhanghua Chen;
Frank D Gilliland;
Michael Goran;
Xin Hu;
Dean Jones;
Katerina Margetaki;
Sarah Rock;
Nikoa Stratakis;
Damaskini Valvi;
Douglas Walker;
David Conti;
Leda Chatzi
BACKGROUND: Exposure to per-and polyfluoroalkyl substances (PFAS), a prevalent class of persistent pollutants, may increase the risk of type 2 diabetes. OBJECTIVE: We examined associations between PFAS exposure and glucose metabolism in youth. METHODS: Overweight/obese adolescents from the Study of Latino Adolescents at Risk of Type 2 Diabetes (SOLAR; n = 310) participated in annual visits for an average of 3:3 ± 2:9 y. Generalizability of findings were tested in young adults from the Southern California Children’s Health Study (CHS; n = 135) who participated in a clinical visit with a similar protocol. At each visit, oral glucose tolerance tests were performed to estimate glucose metabolism and b-cell function via the insulinogenic index. Four PFAS were measured at baseline using liquid chromatography–high-resolution mass spectrometry; high levels were defined as concentrations >66th percentile. RESULTS: In females from the SOLAR, high perfluorohexane sulfonate (PFHxS) levels (≥2:0 ng=mL) were associated with the development of dysre-gulated glucose metabolism beginning in late puberty. The magnitude of these associations increased postpuberty and persisted through 18 years of age. For example, postpuberty, females with high PFHxS levels had 25-mg=dL higher 60-min glucose (95% CI: 12, 39 mg=dL; p < 0:0001), 15-mg=dL higher 2-h glucose (95% CI: 1, 28 mg=dL; p = 0:04), and 25% lower b-cell function (p = 0:02) compared with females with low levels. Results were largely consistent in the CHS, where females with elevated PFHxS levels had 26-mg=dL higher 60-min glucose (95% CI: 6:0, 46 mg=dL; p = 0:01) and 19-mg=dL higher 2-h glucose, which did not meet statistical significance (95% CI: –1, 39 mg=dL; p = 0:08). In males, no consistent associations between PFHxS and glucose metabolism were observed. No consistent associations were observed for other PFAS and glucose metabolism. DISCUSSION: Youth exposure to PFHxS was associated with dysregulated glucose metabolism in females, which may be due to changes in b-cell func-tion. These associations appeared during puberty and were most pronounced postpuberty. https://doi.org/10.1289/EHP9200.