Background:
Chronic alcohol ingestion predisposes to lung injury and disrepair during sepsis. Our previous studies outlined roles for transforming growth factor-beta 1 (TGFβ1) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in epithelial barrier homeostasis and how alcohol perturbs their expression and signaling. Here we hypothesize that ethanol-exposed lung fibroblasts (LF) are a source of dysregulated TGFβ1 and GM-CSF and thereby alter airway epithelial barrier function.
Methods:
Human or rat LF were cultured ± ethanol for 2 weeks and then co-cultured with human or rat airway epithelial cells (AEC) seeded on Transwell permeable supports. In selected groups, a TGFβ1 receptor type 1 (TGFβR1) inhibitor (SB431542) or a TGFβ1 neutralizing antibody was applied. Transepithelial electrical resistance (TER) was measured prior to co-culture and on day 5 of co-culture. AEC were then analyzed for the expression of selected tight junction and mesenchymal proteins, and transwell membranes were analyzed by immunofluorescence microscopy for ZO-1 expression and localization. TGFβ1 and GM-CSF levels in conditioned media from the co-cultures were quantified by ELISA.
Results:
AEC co-cultured with ethanol-exposed LF (ELF) showed a significant reduction in TER and corresponding decreases in ZO-1 expression, whereas collagen type 1A1 and α-smooth muscle actin protein expression were increased. In parallel, in conditioned media from the ELF + AEC co-cultures, activated TGFβ1 levels increased and GM-CSF levels decreased. Notably, all the effects of ELF on the AEC were prevented by blocking TGFβ1 activity.
Conclusions:
Prior ethanol exposure to LF induces barrier dysfunction in naive AEC in a paracrine fashion through activation of TGFβ1 signaling and suppression of GM-CSF. These experimental findings provide a potential mechanism by which chronic alcohol ingestion impairs airway epithelial integrity and renders individuals susceptible to lung injury.
Background:
Alcohol impairs pulmonary innate immune function and is associated with an increased risk for tuberculosis (TB). Toll-like receptor 2 (TLR2) is a pattern recognition receptor on alveolar macrophages that recognizes Mycobacterium tuberculosis (Mtb). Its expression depends, in part, on granulocyte macrophage-colony stimulating factor (GM-CSF) signaling. Given our prior work demonstrating suppression of GM-CSF signaling in chronic alcohol ingestion, we hypothesized that alcohol impairs TLR2 expression via suppression of GM-CSF and thereby reduces the ability of the macrophage to recognize and phagocytose Mtb.
Methods:
Primary alveolar macrophages were isolated from control-fed and alcohol-fed rats. Prior to cell isolation, some alcohol-fed rats were treated with intranasal GM-CSF and then endotracheally inoculated with an attenuated strain of Mtb. Primary macrophages were then isolated and immunofluorescence (IF) was used to determine phagocytic efficiency and TLR2 expression in the presence and absence of GM-CSF treatment as well as phagocytic efficiency in the presence and absence of TLR2 neutralization.
Results:
TLR2 expression and phagocytosis of Mtb were significantly decreased in the alveolar macrophages of alcohol-fed rats compared to control-fed rats. In parallel, blocking TLR2 signaling recapitulated this decreased phagocytosis of Mtb. In contrast, intranasal GM-CSF treatment restored TLR2 expression and Mtb phagocytosis in the alveolar macrophages of alcohol-fed rats to levels comparable to control-fed rats.
Conclusions:
Chronic alcohol ingestion reduces TLR2 protein expression and phagocytosis of Mtb, likely as a result of impaired GM-CSF signaling. GM-CSF restores membrane-bound TLR2 expression and phagocytic function.
BACKGROUND: While 16S ribosomal RNA (rRNA) sequencing has been used to characterize the lung's bacterial microbiota in human immunodeficiency virus (HIV)-infected individuals, taxonomic studies provide limited information on bacterial function and impact on the host. Metabolic profiles can provide functional information on host-microbe interactions in the lungs. We investigated the relationship between the respiratory microbiota and metabolic profiles in the bronchoalveolar lavage fluid of HIV-infected and HIV-uninfected outpatients.
RESULTS: Targeted sequencing of the 16S rRNA gene was used to analyze the bacterial community structure and liquid chromatography-high-resolution mass spectrometry was used to detect features in bronchoalveolar lavage fluid. Global integration of all metabolic features with microbial species was done using sparse partial least squares regression. Thirty-nine HIV-infected subjects and 20 HIV-uninfected controls without acute respiratory symptoms were enrolled. Twelve mass-to-charge ratio (m/z) features from C18 analysis were significantly different between HIV-infected individuals and controls (false discovery rate (FDR) = 0.2); another 79 features were identified by network analysis. Further metabolite analysis demonstrated that four features were significantly overrepresented in the bronchoalveolar lavage (BAL) fluid of HIV-infected individuals compared to HIV-uninfected, including cystine, two complex carbohydrates, and 3,5-dibromo-L-tyrosine. There were 231 m/z features significantly associated with peripheral blood CD4 cell counts identified using sparse partial least squares regression (sPLS) at a variable importance on projection (VIP) threshold of 2. Twenty-five percent of these 91 m/z features were associated with various microbial species. Bacteria from families Caulobacteraceae, Staphylococcaceae, Nocardioidaceae, and genus Streptococcus were associated with the greatest number of features. Glycerophospholipid and lineolate pathways correlated with these bacteria.
CONCLUSIONS: In bronchoalveolar lavage fluid, specific metabolic profiles correlated with bacterial organisms known to play a role in the pathogenesis of pneumonia in HIV-infected individuals. These findings suggest that microbial communities and their interactions with the host may have functional metabolic impact in the lung.
Macrophage phenotype and function is dependent on the underlying microenvironment. Many diseases are accompanied by abnormal shifts in macrophage polarization state that limit the ability of the cells to become innate immune effectors. Previous work in the field suggests that chronic alcohol ingestion, which is associated with a shift away from innate immune effector macrophages, is also associated with a deficient response to oxidative stress. We therefore hypothesized that the optimal response to oxidative stress was dependent on the ability of the macrophage to become an innate immune effector cell. To investigate this hypothesis, we first confirmed that we could reproducibly polarize NR8383 cells (a rat alveolar macrophage cell line) into the prototypical M1 and M2 states (using IFN-γ and IL-4, respectively). We then tested the polarized cells for their ability to scavenge reactive oxygen species generated by glucose oxidase (GOX) using the Amplex red assay and found that IFN-γ-polarized cells had greater scavenging capacity. To elucidate the mechanism of the enhanced response to oxidative stress, we then assessed key components of the anti-oxidant response; specifically, nuclear factor (erythroid-derived 2)-like 2 (Nrf2), the master transcription factor responsible for the cellular response to oxidative stress, and one of its downstream effectors, glutamate-cysteine ligase catalytic subunit (GCLC). We found that both proteins were significantly upregulated in the IFN-γ-polarized cells. To confirm that Nrf2 is an integral component of this improved anti-oxidant response, we transfected IFN-γ-polarized cells with either silencing RNA to Nrf2 or control silencing RNA and found that hydrogen peroxide scavenging was significantly impaired in the si-Nrf2-treated cells. Further, transfecting untreated cells with si-Nrf2 polarized them toward the M2 phenotype in the absence of IL-4, suggesting a mechanistic role for Nrf2 in macrophage polarization. We then confirmed several of our key experiments in primary rat alveolar macrophages cells. Taken together, these findings suggest that the M1 polarization state is necessary for the optimal response to oxidative stress in the macrophage, and that this response is mediated through Nrf2 and its downstream effectors.
Background
Patients admitted to the intensive care unit with alcohol use disorders have increased morbidity and mortality. The purpose of this study was to determine how chronic alcohol ingestion alters the host response to sepsis in mice.
Methods
Mice were randomized to receive either alcohol or water for 12 weeks and then subjected to cecal ligation and puncture. Mice were sacrificed 24 hours post-operatively or followed seven days for survival.
Results
Septic alcohol-fed mice had a significantly higher mortality than septic water-fed mice (74% vs. 41%, p = 0.01). This was associated with worsened gut integrity in alcohol-fed mice with elevated intestinal epithelial apoptosis, decreased crypt proliferation and shortened villus length. Further, alcohol-fed mice had higher intestinal permeability with decreased ZO-1 and occludin protein expression in the intestinal tight junction. The frequency of splenic and bone marrow CD4+ T cells was similar between groups; however, splenic CD4+ T cells in septic alcohol-fed mice had a marked increase in both TNF and IFN-γ production following ex vivo stimulation. Neither the frequency nor function of CD8+ T cells differed between alcohol-fed and water-fed septic mice. NK cells were decreased in both the spleen and bone marrow of alcohol-fed septic mice. Pulmonary myeloperoxidase levels and BAL levels of G-CSF and TFG-β were higher in alcohol-fed mice. Pancreatic metabolomics demonstrated increased acetate, adenosine, xanthine, acetoacetate, 3-hydroxybutyrate and betaine in alcohol-fed mice and decreased cytidine, uracil, fumarate, creatine phosphate, creatine, and choline. Serum and peritoneal cytokines were generally similar between alcohol-fed and water-fed mice, and there were no differences in bacteremia, lung wet to dry weight, or pulmonary, liver or splenic histology.
Conclusions
When subjected to the same septic insult, mice with chronic alcohol ingestion have increased mortality. Alterations in intestinal integrity, the host immune response, and pancreatic metabolomics may help explain this differential response.
Among the many organ systems affected by harmful alcohol use, the lungs are particularly susceptible to infections and injury. The mechanisms responsible for rendering people with alcohol use disorder (AUD) vulnerable to lung damage include alterations in host defenses of the upper and lower airways, disruption of alveolar epithelial barrier integrity, and alveolar macrophage immune dysfunction. Collectively, these derangements encompass what has been termed the "alcoholic lung" phenotype. Alcohol-related reductions in antioxidant levels also may contribute to lung disease in people with underlying AUD. In addition, researchers have identified several regulatory molecules that may play crucial roles in the alcohol-induced disease processes. Although there currently are no approved therapies to combat the detrimental effects of chronic alcohol consumption on the respiratory system, these molecules may be potential therapeutic targets to guide future investigation.
Background: Alcohol significantly impairs antioxidant defenses and innate immune function in the lung and increases matrix metalloproteinase 9 (MMP-9) activity. The receptor for advanced glycation end products (RAGE) is a well-characterized marker of lung injury that is cleaved by MMP-9 into soluble RAGE and has not yet been examined in the alcoholic lung. We hypothesized that chronic alcohol ingestion would impair RAGE signaling via MMP-9 in the alveolar macrophage and thereby impair innate immune function.
Materials and Methods: Primary alveolar macrophages were isolated from control-fed or alcohol-fed rats. Real-time polymerase chain reaction (qRT-PCR), Western blotting, and enzyme-linked immunosorbent assays were performed to evaluate RAGE expression. Silencing of MMP-9 ribonucleic acid (RNA) in a rat alveolar macrophage cell line was confirmed by qRT-PCR, and immunofluorescence (IF) was used to assess the association between alcohol, MMP-9, and RAGE. Phagocytosis was assessed using flow cytometry. Sulforaphane and glutathione were used to assess the relationship between oxidative stress and RAGE. Results: RAGE messenger RNA expression was significantly increased in the alveolar macrophages of alcohol-fed rats, but IF showed that membrane-bound RAGE protein expression was decreased. Lavage fluid demonstrated increased levels of soluble RAGE (sRAGE). Decreasing MMP-9 expression using si-MMP-9 abrogated the effects of alcohol on RAGE protein. Phagocytic function was suppressed by direct RAGE inhibition, and the impairment was reversed by antioxidant treatment.
Conclusions: Chronic alcohol ingestion reduces RAGE protein expression and increases the amount of sRAGE in alveolar lavage fluid, likely via cleavage by MMP-9. In addition, it impairs phagocytic function. Antioxidants restore membrane-bound RAGE and phagocytic function.
Pulmonary Arterial Hypertension (PAH) is overrepresented in People Living with Human Immunodeficiency Virus (PLWH). HIV protein gp120 plays a key role in the pathogenesis of HIV-PAH. Genetic changes in HIV gp120 determine viral interactions with chemokine receptors; specifically, HIV-X4 viruses interact with CXCR4 while HIV-R5 interact with CCR5 co-receptors. Herein, we leveraged banked samples from patients enrolled in the NIH Lung HIV studies and used bioinformatic analyses to investigate whether signature sequences in HIV-gp120 that predict tropism also predict PAH. Further biological assays were conducted in pulmonary endothelial cells in vitro and in HIV-transgenic rats. We found that significantly more persons living with HIV-PAH harbor HIV-X4 variants. Multiple HIV models showed that recombinant gp120-X4 as well as infectious HIV-X4 remarkably increase arachidonate 5-lipoxygenase (ALOX5) expression. ALOX5 is essential for the production of leukotrienes; we confirmed that leukotriene levels are increased in bronchoalveolar lavage fluid of HIV-infected patients. This is the first report associating HIV-gp120 genotype to a pulmonary disease phenotype, as we uncovered X4 viruses as potential agents in the pathophysiology of HIV-PAH. Altogether, our results allude to the supplementation of antiretroviral therapy with ALOX5 antagonists to rescue patients with HIV-X4 variants from fatal PAH.
Background: Alcohol abuse, which impairs antioxidant defenses and promotes acute lung injury, increases Nrf2 nuclear translocation but nevertheless inhibits its activation of the antioxidant response element (ARE). Thioredoxin-1 (Trx1) is required for optimal Nrf2 binding and activation of the ARE, and we hypothesized that its inhibition contributes to impaired Nrf2-ARE signaling in the alcoholic lung. Methods: Lung tissue and primary lung fibroblasts (PLFs) were isolated from C57/BL6 wild-type (WT) and transgenic mice overexpressing the human Trx1 gene with a nuclear localizing sequence (NLS-Tg); some mice consumed alcohol in water prior to lung tissue and PLF isolation; in some mice, acute lung injury was induced with intratracheal bleomycin. In other experiments, PLFs were isolated from WT and NLS-Tg mice and then exposed to alcohol. Finally, PLF isolated from WT mice were transfected with Trx1 expression vector containing either a cytosolic localized sequence (NES) or a nuclear localized sequence (NLS) prior to alcohol exposure. Results: Alcohol treatment in vivo or in vitro decreased Trx1 expression, and bleomycin-treated alcohol-fed mice had fibrotic disrepair in their lungs. In parallel, whereas alcohol exposure in vitro increased TGFβ1 expression and decreased Nrf2-ARE activity in PLF from WT mice, these effects were not observed in PLF from NLS-Tg mice. Finally, selective overexpression of Trx1 in the nucleus but not in the cytosol preserved Nrf2-ARE activity during alcohol exposure. Conclusions: Although alcohol-induced redox stress actually promotes Nrf2 nuclear translocation, the coincident suppression of Trx1 impairs Nrf2-ARE activity within the nuclear compartment. Nuclear overexpression of Trx1 restored Nrf2-ARE activity and attenuated alcohol-induced TGFβ1 expression and alcohol-induced exaggerate response to bleomycin-induced acute lung injury.