The loss of melanized neurons in the substantia nigra pars compacta (SNc) is a hallmark pathology in Parkinson’s disease (PD). Melanized neurons in SNc can be visualized in vivo using magnetization transfer (MT) effects. Nigral volume was extracted in data acquired with a MT-prepared gradient echo sequence in 33 controls, 83 non-manifest carriers (42 LRRK2 and 41 GBA nonmanifest carriers), 65 prodromal hyposmic participants, 105 de novo PD patients and 26 48-month PD patients from the Parkinson’s Progressive Markers Initiative. No difference in nigral volume was seen between controls and LRRK2 and GBA non-manifest carriers (F=0.076; P=0.927). A significant main effect in group was observed between controls, prodromal hyposmic participants, and overt PD patients (F=5.192; P=0.002). Longer disease duration significantly correlated with lower nigral volume (r=−0.252; P=0.010). This study shows that nigral depigmentation can be robustly detected in prodromal hyposmic participants and overt PD patients.
Background
To date there are no validated MRI biomarkers to assist diagnosis of Parkinson’s disease (PD). Our aim was to investigate PD related iron changes in the substantia nigra pars compacta (SNpc) as defined by neuromelanin-sensitive MR contrast.
Methods
Thirty-nine PD participants and 33 healthy controls were scanned at 3.0-T using a 16-echo gradient echo sequence to create R2* maps for the evaluation of iron content to find the overlap with a neuromelanin based SNpc mask. The SNpc overlap percentage with the R2* map, and the R2* values in both the whole SNpc and the overlap volume were compared between PD and control groups, and correlated with clinical features for PD participants. Finally, the diagnostic performance of the SNpc overlap percentage was evaluated using ROC analysis.
Results
PD related iron changes mostly occur in the lateral-ventral part of the neuromelanin SNpc. The R2* values in the whole SNpc and the SNpc overlap volume, and the SNpc overlap percentage were larger in PD participants than in controls. Furthermore, the SNpc overlap percentage was positively correlated with the disease duration in PD. The SNpc overlap percentage provided excellent diagnostic accuracy for discriminating PD participants from controls (AUC = 0.93), while the R2* values in the whole SNpc or the overlap volume were less effective.
Conclusion
The overlap between the iron content as determined by R2* mapping and neuromelanin in the substantia nigra pars compacta has the potential to be a neuroimaging biomarker for diagnosing Parkinson’s disease.
Parkinson's disease (PD), an intractable condition impairing motor and cognitive function, is imperfectly treated by drugs and surgery. Two priority issues for many people with PD are OFF-time and cognitive impairment. Even under best medical management, three-fourths of people with PD experience “OFF-time” related to medication-related motor fluctuations, which severely impacts both quality of life and cognition. Cognitive deficits are found even in newly diagnosed people with PD and are often intractable. Our data suggest that partnered dance aerobic exercise (PDAE) reduces OFF-time on the Movement Disorders Society Unified Parkinson Disease Rating Scale-IV (MDS-UPDRS-IV) and ameliorates other disease features, which motivate the PAIRED trial. PDAE provides AE during an improvisational, cognitively engaging rehabilitative physical activity. Although exercise benefits motor and cognitive symptoms and may be neuroprotective for PD, studies using robust biomarkers of neuroprotection in humans are rare. We propose to perform a randomized, controlled trial in individuals with diagnosed mild–moderate PD to compare the efficacy of PDAE vs. walking aerobic exercise (WALK) for OFF-time, cognition, and neuroprotection. We will assess neuroprotection with neuromelanin-sensitive MRI (NM-MRI) and iron-sensitive (R2*) MRI sequences to quantify neuromelanin loss and iron accumulation in substantia nigra pars compacta (SNc). We will use these biomarkers, neuromelanin loss, and iron accumulation, as tools to chart the course of neurodegeneration in patients with PD who have undergone long-term (16 months) intervention. We will randomly assign 102 individuals with mild–moderate PD to 16 months of PDAE or WALK. The 16-month intervention period will consist of Training (3 months of biweekly sessions) and Maintenance (13 months of weekly sessions) phases. We will assess participants at baseline, 3 months (immediately post-Training), and 16 months (immediately post-Maintenance) for OFF-time and behaviorally and physiologically measured cognition. We will acquire NM-MRI and R2* imaging data at baseline and 16 months to assess neuroprotection. We will (1) examine effects of Training and Maintenance phases of PDAE vs. WALK on OFF-time, (2) compare PDAE vs. WALK at 3 and 16 months on behavioral and functional MRI (fMRI) measures of spatial cognition, and (3) compare PDAE vs. WALK for effects on rates of neurodegeneration.
Background:
Previous studies investigating nigral iron accumulation used T 2 or T 2 *-weighted contrasts to define the regions of interest (ROIs) in the substantia nigra with mixed results. Because these contrasts are not sensitive to neuromelanin, ROIs may have inadvertently missed the SNpc. An approach sensitive to neuromelanin should yield consistent results. We examine iron deposition in ROIs derived from neuromelanin-sensitive and T 2 *-weighted contrasts, respectively.
Methods:
T 1 -weighted and multiecho gradient echo imaging data were obtained in 2 cohorts. Multiecho gradient echo imaging data were analyzed using neuromelanin-sensitive SNpc ROIs as well as T 2 *-weighted SNr ROIs.
Results: When compared with controls, significantly larger R 2 * values were seen in the SNpc of PD patients in both cohorts. Mean R 2 * values in the SNr of PD patients showed no consistency, with 1 cohort showing a small, statistically significant increase, whereas the other cohort exhibited no statistical difference.
Conclusion: Mean R 2 * in the SNpc defined by neuromelanin-sensitive MRI is significantly increased in PD.
Substantia nigra pars compacta (SNc) and locus coeruleus (LC) are neuromelanin-rich nuclei implicated in diverse cognitive and motor processes in normal brain function and disease. However, their roles in aging and neurodegenerative disease mechanisms have remained unclear due to a lack of tools to study them in vivo . Preclinical and post-mortem human investigations indicate that the relationship between tissue neuromelanin content and neurodegeneration is complex. Neuromelanin exhibits both neuroprotective and cytotoxic characteristics, and tissue neuromelanin content varies across the lifespan, exhibiting an inverted U-shaped relationship with age. Neuromelanin-sensitive MRI (NM-MRI) is an emerging modality that allows measurement of neuromelanin-associated contrast in SNc and LC in humans. NM-MRI robustly detects disease effects in these structures in neurodegenerative and psychiatric conditions, including Parkinson's disease (PD). Previous NM-MRI studies of PD have largely focused on detecting disease group effects, but few studies have reported NM-MRI correlations with phenotype. Because neuromelanin dynamics are complex, we hypothesize that they are best interpreted in the context of both disease stage and aging, with neuromelanin loss correlating with symptoms most clearly in advanced stages where neuromelanin loss and neurodegeneration are coupled. We tested this hypothesis using NM-MRI to measure SNc and LC volumes in healthy older adult control individuals and in PD patients with and without freezing of gait (FOG), a severe and disabling PD symptom. We assessed for group differences and correlations between NM-MRI measures and aging, cognition and motor deficits. SNc volume was significantly decreased in PD with FOG compared to controls. SNc volume correlated significantly with motor symptoms and cognitive measures in PD with FOG, but not in PD without FOG. SNc volume correlated significantly with aging in PD. When PD patients were stratified by disease duration, SNc volume correlated with aging, cognition, and motor deficits only in PD with disease duration >5 years. We conclude that in severe or advanced PD, identified by either FOG or disease duration >5 years, the observed correlations between SNc volume and aging, cognition, and motor function may reflect the coupling of neuromelanin loss with neurodegeneration and the associated emergence of a linear relationship between NM-MRI measures and phenotype.
Patients with Parkinson’s disease undergo a loss of melanized neurons in substantia nigra pars compacta and locus coeruleus. Very few studies have assessed substantia nigra pars compacta and locus coeruleus pathology in Parkinson’s disease simultaneously with magnetic resonance imaging (MRI). Neuromelanin-sensitive MRI measures of substantia nigra pars compacta and locus coeruleus volume based on explicit magnetization transfer contrast have been shown to have high scan-rescan reproducibility in controls, but no study has replicated detection of Parkinson’s disease-associated volume loss in substantia nigra pars compacta and locus coeruleus in multiple cohorts with the same methodology. Two separate cohorts of Parkinson’s disease patients and controls were recruited from the Emory Movement Disorders Clinic and scanned on two different MRI scanners. In cohort 1, imaging data from 19 controls and 22 Parkinson’s disease patients were acquired with a Siemens Trio 3 Tesla scanner using a 2D gradient echo sequence with magnetization transfer preparation pulse. Cohort 2 consisted of 33 controls and 39 Parkinson’s disease patients who were scanned on a Siemens Prisma 3 Tesla scanner with a similar imaging protocol. Locus coeruleus and substantia nigra pars compacta volumes were segmented in both cohorts. Substantia nigra pars compacta volume (Cohort 1: p = 0.0148; Cohort 2: p = 0.0011) and locus coeruleus volume (Cohort 1: p = 0.0412; Cohort 2: p = 0.0056) were significantly reduced in the Parkinson’s disease group as compared to controls in both cohorts. This imaging approach robustly detects Parkinson’s disease effects on these structures, indicating that it is a promising marker for neurodegenerative neuromelanin loss.
by
Jonathan E Elliott;
Miranda M Lim;
Allison T Keil;
Ronald B Postuma;
Amelie Pelletier;
Jean-François Gagnon;
Erik K St Louis;
Leah K Forsberg;
Julie A Fields;
Daniel Huddleston;
Donald Bliwise;
Alon Y Avidan;
Michael J Howell;
Carlos H Schenck;
Jennifer McLeland;
Susan R Criswell;
Aleksandar Videnovic;
Emmanuel H During;
Mitchell G Miglis;
David R Shprecher;
Joyce K Lee-Iannotti;
Bradley F Boeve;
Yo-El S Ju
Objective: Rapid eye movement (REM) sleep behavior disorder (RBD) is widely considered a prodromal synucleinopathy, as most with RBD develop overt synucleinopathy within ~10 years. Accordingly, RBD offers an opportunity to test potential treatments at the earliest stages of synucleinopathy. The North American Prodromal Synucleinopathy (NAPS) Consortium has created a multisite RBD participant, primarily clinic-based cohort to better understand characteristics at diagnosis, and in future work, identify predictors of phenoconversion, develop synucleinopathy biomarkers, and enable early stage clinical trial enrollment. Methods: Participants ≥18 years of age with overnight polysomnogram-confirmed RBD without Parkinson's disease, dementia, multiple system atrophy, or narcolepsy were enrolled from nine sites across North America (8/2018 to 4/2021). Data collection included family/personal history of RBD and standardized assessments of cognitive, motor, sensory, and autonomic function. Results: Outcomes are primarily reported based on sex (361 total: n = 295 male, n = 66 female), and secondarily based on history of antidepressant use (n = 200 with, n = 154 without; with correction for sex differences) and based on extent of synucleinopathy burden (n = 56 defined as isolated RBD, n = 305 defined as RBD+ [i.e., exhibiting ≥1 abnormality]). Overall, these participants commonly demonstrated abnormalities in global cognition (MoCA; 38%), motor function (alternate tap test; 48%), sensory (BSIT; 57%), autonomic function (orthostatic hypotension, 38.8%), and anxiety/depression (BAI and PHQ-9; 39.3% and 31%, respectively). Interpretation: These RBD participants, assessed with extensive history, demographic, cognitive, motor, sensory, and autonomic function demonstrated a lack of sex differences and high frequency of concomitant neurological abnormalities. These participants will be valuable for future longitudinal study and neuroprotective clinical trials.
Introduction: Striatal dopamine transporter (DAT) imaging using 123I-ioflupane single photon positron emitted computed tomography (SPECT) (DaTScan, GE) identifies 5−20% of newly diagnosed Parkinson’s disease (PD) subjects enrolling in clinical studies to have scans without evidence of dopaminergic deficit (SWEDD). These individuals meet diagnostic criteria for PD, but do not clinically progress as expected, and they are not believed to have neurodegenerative Parkinsonism. Inclusion of SWEDD participants in PD biomarker studies or therapeutic trials may therefore cause them to fail. DaTScan can identify SWEDD individuals, but it is expensive and not widely available; an alternative imaging approach is needed. Here, we evaluate the use of neuromelanin-sensitive, iron-sensitive, and diffusion contrasts in substantia nigra pars compacta (SNpc) to differentiate SWEDD from PD individuals. Methods: Neuromelanin-sensitive, iron-sensitive, and diffusion imaging data for SWEDD, PD, and control subjects were downloaded from the Parkinson’s progression markers initiative (PPMI) database. SNpc volume, SNpc iron (R2), and SNpc free water (FW) were measured for each participant. Results: Significantly smaller SNpc volume was seen in PD as compared to SWEDD (P < 10–3) and control (P < 10–3) subjects. SNpc FW was elevated in the PD group relative to controls (P = 0.017). No group difference was observed in SNpc R2. Conclusion: In conclusion, nigral volume and FW in the SWEDD group were similar to that of controls, while a reduction in nigral volume and increased FW were observed in the PD group relative to SWEDD and control participants. These results suggest that these MRI measures should be explored as a cost-effective alternative to DaTScan for evaluation of the nigrostriatal system.
The loss of melanized neurons in the substantia nigra pars compacta is a primary feature in Parkinson's disease. Iron deposition occurs in conjunction with this loss. Loss of nigral neurons should remove barriers for diffusion and increase diffusivity of water molecules in regions undergoing this loss. In metrics from single-compartment diffusion tensor imaging models, these changes should manifest as increases in mean diffusivity and reductions in fractional anisotropy as well as increases in the free water compartment in metrics derived from bi-compartment models. However, studies examining nigral diffusivity changes from Parkinson's disease with single-compartment models have yielded inconclusive results and emerging evidence in control subjects indicates that iron corrupts diffusivity metrics derived from single-compartment models. We aimed to examine Parkinson's disease-related changes in nigral iron and diffusion measures from single- and bi-compartment models as well as assess the effect of iron on these diffusion measures in two separate Parkinson's cohorts. Iron-sensitive data and diffusion data were analysed in two cohorts: First, a discovery cohort consisting of 71 participants (32 control participants and 39 Parkinson's disease participants) was examined. Second, an external validation cohort, obtained from the Parkinson's Progression Marker's Initiative, consisting of 110 participants (58 control participants and 52 Parkinson's disease participants) was examined. The effect of iron on diffusion measures from single- and bi-compartment models was assessed in both cohorts. Measures sensitive to the free water compartment (discovery cohort: P=0.006; external cohort: P=0.01) and iron content (discovery cohort: P<0.001; validation cohort: P=0.02) were found to increase in substantia nigra of the Parkinson's disease group in both cohorts. However, diffusion markers derived from the singlecompartment model (i.e. mean diffusivity and fractional anisotropy) were not replicated across cohorts. Correlations were seen between single-compartment diffusion measures and iron markers in the discovery cohort (iron-mean diffusivity: r=-0.400, P=0.006) and validation cohort (iron-mean diffusivity: r=-0.387, P=0.003) but no correlation was observed between a measure from the bi-compartment model related to the free water compartment and iron markers in either cohort. In conclusion, the variability of nigral diffusion metrics derived from the single-compartment model in Parkinson's disease may be attributed to competing influences of increased iron content, which tends to drive diffusivity down, and increases in the free water compartment, which tends to drive diffusivity up. In contrast to diffusion metrics derived from the single-compartment model, no relationship was seen between iron and the free water compartment in substantia nigra.
Background: Approximately forty percent of all dopaminergic neurons in SNpc are located in five dense neuronal clusters, named nigrosomes. T2- or T2*-weighted images are used to delineate the largest nigrosome, named nigrosome-1. In these images, nigrosome-1 is a hyperintense region in the caudal and dorsal portion of the T2- or T2*-weighted substantia nigra. In PD, nigrosome-1 experiences iron accumulation, which leads to a reduction in T2-weighted hyperintensity. Here, we examine neuromelanin-depletion and iron deposition in regions of interest (ROIs) derived from quantitative-voxel based morphometry (qVBM) on neuromelanin-sensitive images and compare the ROIs with nigrosome-1 identified in T2*-weighted images. Methods: Neuromelanin-sensitive and multi-echo gradient echo imaging data were obtained. R2* was calculated from multi-echo gradient echo imaging data. qVBM analysis was performed on neuromelanin-sensitive images and restricted to SNpc. Mean neuromelanin-sensitive contrast and R2* was measured from the resulting qVBM clusters. Nigrosome-1 was segmented in T2*-weighted images of control subjects and its location was compared to the spatial location of the qVBM clusters. Results: Two bilateral clusters emerged from the qVBM analysis. These clusters showed reduced neuromelanin-sensitive contrast and increased mean R2* in PD as compared to controls. Cluster-1 from the qVBM analysis was in a similar spatial location as nigrosome-1, as seen in T2*-weighted images. Conclusion: qVBM cluster-1 shows reduced neuromelanin-sensitive contrast and is in a similar spatial position as nigrosome-1. This region likely corresponds to nigrosome-1 while the second cluster may correspond to nigrosome-2.