by
Martiza J. Romero;
Qian Yue;
Bhupesh Singla;
Jurg Hamacher;
Supriya Sridhar;
Auriel S. Moseley;
Chang Song;
Mobarak A. Mraheil;
Bernhard Fischer;
Markus Zeitlinger;
Trinad Chakraborty;
David Fulton;
Lin Gan;
Brian H. Annex;
Gabor Csanyi;
Douglas C Eaton;
Rudolf Lucas
Introduction
Although both COVID-19 and non-COVID-19 ARDS can be accompanied by significantly increased levels of circulating cytokines, the former significantly differs from the latter by its higher vasculopathy, characterized by increased oxidative stress and coagulopathy in lung capillaries. This points towards the existence of SARS-CoV2-specific factors and mechanisms that can sensitize the endothelium towards becoming dysfunctional. Although the virus is rarely detected within endothelial cells or in the circulation, the S1 subunit of its spike protein, which contains the receptor binding domain (RBD) for human ACE2 (hACE2), can be detected in plasma from COVID-19 patients and its levels correlate with disease severity. It remains obscure how the SARS-CoV2 RBD exerts its deleterious actions in lung endothelium and whether there are mechanisms to mitigate this.
Methods
In this study, we use a combination of in vitro studies in RBD-treated human lung microvascular endothelial cells (HL-MVEC), including electrophysiology, barrier function, oxidative stress and human ACE2 (hACE2) surface protein expression measurements with in vivo studies in transgenic mice globally expressing human ACE2 and injected with RBD.
Results
We show that SARS-CoV2 RBD impairs endothelial ENaC activity, reduces surface hACE2 expression and increases reactive oxygen species (ROS) and tissue factor (TF) generation in monolayers of HL-MVEC, as such promoting barrier dysfunction and coagulopathy. The TNF-derived TIP peptide (a.k.a. solnatide, AP301) -which directly activates ENaC upon binding to its a subunit- can override RBD-induced impairment of ENaC function and hACE2 expression, mitigates ROS and TF generation and restores barrier function in HL-MVEC monolayers. In correlation with the increased mortality observed in COVID-19 patients co-infected with S. pneumoniae, compared to subjects solely infected with SARS-CoV2, we observe that prior intraperitoneal RBD treatment in transgenic mice globally expressing hACE2 significantly increases fibrin deposition and capillary leak upon intratracheal instillation of S. pneumoniae and that this is mitigated by TIP peptide treatment.
by
Guang Yang;
Helena Pillich;
Richard White;
Istvan Czikora;
Isabelle Pochic;
Qiang Yue;
Martina Hudel;
Boris Gorshkov;
Alexander Verin;
Supriya Sridhar;
Carlos M. Isales;
Douglas Eaton;
Jurg Hamacher;
Trinad Chakraborty;
Rudolf Lucas
Pulmonary permeability edema is characterized by reduced alveolar Na+ uptake capacity and capillary barrier dysfunction and is a potentially lethal complication of listeriosis. Apical Na+ uptake is mainly mediated by the epithelial sodium channel (ENaC) and initiates alveolar liquid clearance. Here we examine how listeriolysin O (LLO), the pore-forming toxin of Listeria monocytogenes, impairs the expression and activity of ENaC. To that purpose, we studied how sub-lytic concentrations of LLO affect negative and positive regulators of ENaC expression in the H441 airway epithelial cell line. LLO reduced expression of the crucial ENaC-α subunit in H441 cells within 2 h and this was preceded by activation of PKC-α, a negative regulator of the channel’s expression. At later time points, LLO caused a significant reduction in the phosphorylation of Sgk-1 at residue T256 and of Akt-1 at residue S473, both of which are required for full activation of ENaC. The TNF-derived TIP peptide prevented LLO-mediated PKC-α activation and restored phospho-Sgk-1-T256. The TIP peptide also counteracted the observed LLO-induced decrease in amiloride-sensitive Na+ current and ENaC-α expression in H441 cells. Intratracheally instilled LLO caused profound pulmonary edema formation in mice, an effect that was prevented by the TIP peptide; thus indicating the therapeutic potential of the peptide for the treatment of pore-forming toxin-associated permeability edema.
A Cl− channel with a small single-channel conductance (3 pS) was observed in cell-attached patches formed on the apical membrane of cells from the distal nephron cell line (A6) cultured on permeable supports. The current-voltage (I-V) relationship from cell-attached patches or inside-out patches with 1 µM cytosolic Ca2+ strongly rectified with no inward current at potentials more negative than Ecl. However, the rectification decreased (i.e., inward current increased) when the cytosolic Ca2+ concentration ([Ca2+]) was increased above 1 µM. If [Ca2+]i is increased to 800 µM, the I-V relationship became linear. Besides the change in the I-V relationship, an increase in [Ca2+]i also increases the open probability of the channel. Regardless of the recording condition, the channel has one open and one closed state. Both closing and opening rates were dependent on [Ca2+]i an increase of [Ca2+]i decreased the closing rate and increased the opening rate. The Ca2+ dependence of transition rates at positive membrane potentials (cell interior with respect to external surface) were much larger than the dependence at negative intracellular potentials. The I-V relationship of chloride channels in inside-out patches from cells pretreated with insulin was linear even with 1 µM [Ca2+]i while channel currents from cells under similar conditions but without insulin still strongly rectified. Alkaline phosphatase applied to the intracellular surface of inside-out patches altered the outward rectification of single channels in a manner qualitatively similar to that of insulin pretreatment. These observations suggest that phosphorylation/dephosphorylation of the channel modulates the sensitivity of the Cl− channel to cytosolic Ca2+ and that insulin produces its effect by promoting dephosphorylation of the channel.
In order to test the requirement of Na channel inactivation for the action of local anesthetics, we investigated the inhibitory effects of quaternary and tertiary amine anesthetics on normally inactivating and noninactivating Na currents in squid axons under voltage clamp. Either the enzymatic mixture pronase, or chloramine-T (CT), a noncleaving, oxidizing reagent, was used to abolish Na channel inactivation. We found that both the local anesthetics QX-314 and etidocaine, when perfused internally at 1 mM, elicited a "tonic" (resting) block of Na currents, a "time-dependent" block that increased during single depolarizations, and a "use-dependent" (phasic) block that accumulated as a result of repetitive depolarizations. All three effects occurred in both control and CT-treated axons. As in previous reports, little time-dependent or phasic block by QX-314 appeared in pronase-treated axons, although tonic block remained. Time-dependent block was greatest and fastest at large depolarizations (Em greater than +60 mV) for both the control and CT-treated axons. The recovery kinetics from phasic block were the same in control and CT-modified axons. The voltage dependence of the steady state phasic block in CT-treated axons differed from that in the controls; an 8-10% reduction of the maximum phasic block and a steepening and shift of the voltage dependence in the hyperpolarizing direction resulted from CT treatment. The results show that these anesthetics can bind rapidly to open Na channels in a voltagedependent manner, with no requirement for fast inactivation. We propose that the rapid phasic blocking reactions in nerve are consequences primarily of channel activation, mediated by binding of anesthetics to open channels, and that the voltage dependence of phasic block arises directly from that of channel activation.
Ba++ ion blocks K+ conductance at concentrations in the nanomolar range. This blockage is time and voltage dependent. From the time dependence it is possible to determine the forward and reverse rate constants for what appears to be an essentially first-order process of Ba++ interaction. The voltage dependence of the rate constants and the dissociation constants place the site of interaction near the middle of the membrane field. Comparison of the efficacy of Ba++ block at various internal K+ concentrations suggests that Ba++ is probably a simple competitive inhibitor of K+ interaction with the K+ conductance. The character of Ba++ block in high external K+ solutions suggests that Ba++ ion may be "knocked-off" the site by inward movement of external K+ Examination of the effects of other divalent cations suggests that the channel may have a closed state with a divalent cation inside the channel. The relative blockage at different temperatures implies a strong interaction between Ba++ and the K+ conductance.
How does the United States maintain the highest-quality research and teaching in its professional science workforce and ensure that those in this workforce are effectively trained and represent ative of national demographics? In the pathway to science careers, the postdoctoral stage is formative, providing the experiences that define the independent work of one’s first faculty position. It is also a stage in which underrepresented minorities (URMs) disproportionately lose interest in pursuing academic careers in science and, models suggest, a point at which interventions to increase proportions of URMs in such careers could be most effective. We present a mixed-methods, case study analysis from 17 years of the Fellowships in Research and Science Teaching (FIRST) postdoctoral program, to our knowledge the largest and longest continuously running science postdoctoral program in the United States. We demonstrate that FIRST fellows, in sharp contrast to postdocs overall, are inclusive of URMs (50% African American; 70% women) and as or more successful in their fellowships and beyond as a comparison group (measured by publication rate, attainment of employment in academic science careers, and eventual research grant support). Analysis of alumni surveys and focus group discussions reveals that FIRST fellows place highest value on the cohort-driven community and the developmental teaching and research training the program provides.
This investigation was conducted to study the relationship between intracellular Ca2+ and activation of large conductance Ca2+-activated K+ (BK) currents by unoprostone, the first synthetic docosanoid. We used HEK293 cells stably transfected with two BK channel splice variants, one sensitive to unoprostone and the other insensitive. We examined the effects of unoprostone on channel activity in excised inside-out patches and cell-attached patches. The half-maximal stimulation of the sensitive BK channels by Ca2+ was shifted from 3.4 ± 0.017 nM to 0.81 ± .0058 nM in the presence of 10 nM unoprostone. There was no effect on insensitive channels even at unoprostone concentrations as high as 1000 nM. There was no effect of unoprostone on the voltage dependence of the BK channels. Changes in open probability and effects of Ca2+ and unoprostone were best described by a synergistic binding model. These data would suggest that Ca2+ and unoprostone were binding to sites close to one another on the channel protein and that unoprostone binding causes the affinity of the calcium binding site to increase. This idea is consistent with three dimensional models of the Ca2+ binding site and a putative unoprostone binding domain. Our results have important implications for the clinical use of unoprostone to activate BK channels. Channel activation will be limited if intracellular Ca2+ is not elevated.
Regulation of the epithelial sodium channel (ENaC), which regulates fluid homeostasis and blood pressure, is complex and remains incompletely understood. The TIP peptide, a mimic of the lectin-like domain of TNF, activates ENaC by binding to glycosylated residues in the extracellular loop of ENaC-α as well as to a hitherto uncharacterized internal site. Molecular docking studies suggested three residues, Val 567 , Glu 568 , and Glu 571 , located at the interface between the second transmembrane and C-terminal domains of ENaC-α, as a critical site for binding of the TIP peptide. We generated Ala replacement mutants in this region of ENaC-α and examined its interaction with TIP peptide (3M, V567A/E568A/E571A; 2M, V567A/E568A; and 1M, E571A). 3M and 2M ENaC-α but not 1M ENaC-α, displayed significantly reduced binding capacity to TIP peptide and to TNF. When overexpressed in H441 cells,3M mutant ENaC-α formed functional channels with similar gating and density characteristics as the WT subunit and efficiently associated with the β and γ subunits in the plasma membrane. We subsequently assayed for increased open probability time and membrane expression, both of which define ENaC activity, following addition of TIP peptide. TIP peptide increased open probability time in H441 cells overexpressing wild type and 1M ENaC-α channels, but not 3M or 2M ENaC-α channels. On the other hand, TIP peptide-mediated reduction in ENaC ubiquitination was similar in cells overexpressing either WT or 3M ENaC-α subunits. In summary, this study has identified a novel site in ENaC-α that is crucial for activation of the open probability of the channel, but not membrane expression, by the lectin-like domain of TNF.
by
Roy Sutliff;
Erik R. Walp Walp;
Young Hee Kim;
Lori A. Walker;
Alexander M. El-Ali;
Jing Ma;
Robert Bonsall;
Semra Ramosevac;
Douglas Eaton;
Jill W. Verlander;
Laura Hansen;
Rudolph L. Jr. Gleason;
Truyen D. Pham;
Seongun Hong;
Vladimir Pech;
Susan Wall
Pendrin is a Cl-/HCO3- exchanger expressed in the apical regions of renal intercalated cells. Following pendrin gene ablation, blood pressure falls, in part, from reduced renal NaCl absorption. We asked if pendrin is expressed in vascular tissue and if the lower blood pressure observed in pendrin null mice is accompanied by reduced vascular reactivity. Thus, the contractile responses to KCl and phenylephrine (PE) were examined in isometrically mounted thoracic aortas from wild-type and pendrin null mice. Although pendrin expression was not detected in the aorta, pendrin gene ablation changed contractile protein abundance and increased the maximal contractile response to PE when normalized to cross sectional area (CSA). However, the contractile sensitivity to this agent was unchanged. The increase in contractile force/cross sectional area observed in pendrin null mice was due to reduced cross sectional area of the aorta and not from increased contractile force per vessel. The pendrin-dependent increase in maximal contractile response was endothelium- and nitric oxide-independent and did not occur from changes in Ca2+ sensitivity or chronic changes in catecholamine production. However, application of 100 nM angiotensin II increased force/CSA more in aortas from pendrin null than from wild type mice. Moreover, angiotensin type 1 receptor inhibitor (candesartan) treatment in vivo eliminated the pendrin-dependent changes contractile protein abundance and changes in the contractile force/cross sectional area in response to PE. In conclusion, pendrin gene ablation increases aorta contractile force per cross sectional area in response to angiotensin II and PE due to stimulation of angiotensin type 1 receptor-dependent signaling. The angiotensin type 1 receptor-dependent increase in vascular reactivity may mitigate the fall in blood pressure observed with pendrin gene ablation.