Background
Prenatal exposure to phthalates, a group of synthetic chemicals widely used in consumer products, has previously been associated with adverse infant and child development. Studies also suggest that maternal depression and anxiety, may amplify the harmful effects of phthalates on infant and child neurodevelopment.
Study design
Our analysis included a subset of dyads enrolled in the Atlanta African American Maternal-Child Cohort (N = 81). We measured eight phthalate metabolites in first and second trimester (8–14 weeks and 24–32 weeks gestation) maternal urine samples to estimate prenatal exposures. Phthalate metabolite concentrations were averaged across visits and natural log-transformed for analysis. Maternal symptoms of depression and anxiety were assessed using validated questionnaires (Edinberg Postnatal Depression Scale and State Trait Anxiety Inventory, respectively) and the total score on each scale was averaged across study visits. The NICU Network Neurobehavioral Scale (NNNS) was administered at two weeks of age. Our primary outcomes included two composite NNNS scores reflecting newborn attention and arousal. Linear regression was used to estimate associations between individual phthalate exposures and newborn attention and arousal. We assessed effect modification by maternal depression and anxiety.
Results
Higher levels of urinary phthalate metabolites were not associated with higher levels of infant attention and arousal, but true associations may still exist given the limited power of this analysis. In models examining effect modification by maternal depression, we observed that an interquartile range increase in mono (2-ethlyhexyl) phthalate (MEHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was associated with a significant increase in newborn arousal only among those with high depressive symptoms (MEHP: β = 0.71, 95% confidence interval [CI] = 0.10, 1.32 for high, β = −0.30, 95% CI = −0.73, 0.12 for low; MEOHP: β = 0.60, 95% CI = −0.03, 1.23 for high, β = −0.12, 95% CI = −0.58, 0.33 for low; MEHHP: β = 0.54, 95% CI = −0.04, 1.11 for high, β = −0.11, 95% CI = −0.54, 0.32 for low). Similar patterns were observed in models stratified by maternal anxiety, although CIs were wide.
Conclusion
Our results suggest maternal anxiety and depression symptoms may exacerbate the effect of phthalates on infant neurodevelopment. Future studies are needed to determine the optimal levels of attention and arousal in early infancy.
Chemical and microbiological drinking water contaminants pose risks to child health but are not often evaluated concurrently. At two consecutive visits to 96 households in Piura, Peru, we collected drinking water samples, administered health and exposure questionnaires, and collected infant stool samples. Standard methods were used to quantify heavy metals/metalloids, pesticides, and Escherichia coli concentrations in water samples. Stool samples were assayed for bacterial, viral, and parasitic enteropathogens. The primary drinking water source was indoor piped water for 70 of 96 households (73%); 36 households (38%) stored drinking water from the primary source in containers in the home. We found high prevalence of chemical and microbiological contaminants in household drinking water samples: arsenic was detected in 50% of 96 samples, ≥ 1 pesticide was detected in 65% of 92 samples, and E. coli was detected in 37% of 319 samples. Drinking water samples that had been stored in containers had higher odds of E. coli detection (adjusted odds ratio [aOR]: 4.50; 95% CI: 2.04–9.95) and pesticide detection (OR: 6.55; 95% CI: 2.05–21.0) compared with samples collected directly from a tap. Most infants (68%) had ≥ 1 enteropathogen detected in their stool. Higher odds of enteropathogen infection at the second visit were observed among infants from households where pesticides were detected in drinking water at the first visit (aOR: 2.93; 95% CI: 1.13–7.61). Results show concurrent risks of exposure to microbiological and chemical contaminants in drinking water in a low-income setting, despite high access to piped drinking water.
Phytoremediation has been explored as a cost‐effective method to remediate soil Pb contamination. A greenhouse study was conducted to evaluate the efficacy of Vigna unguiculata, Brassica pekinensis, Gomphrena globose, and Helianthus annuus for removing and immobilizing Pb in soil collected from the Westside Lead Superfund site in Atlanta. Plants were cultivated in sampled soil with a Pb concentration of 515 ± 10 mg/kg for 60 days. Soils growing H. annuus were additionally treated with ethylenediaminetetraacetic acid (EDTA) (0.1 g/kg) or compost (20% soil blend) to assess their capabilities for enhancing phytoremediation. Mean post‐phytoremediation Pb concentrations in the four plant species were 23.5, 25.7, 50.0, and 58.1 mg/kg dry weight (DW), respectively, and were substantially higher than 1.55 mg/kg DW in respective plant species grown in control soils with no Pb contamination. The highest Pb concentration, translocation factor, and biomass were found in V. unguiculate among four species without soil amendments. H. annuus treated with EDTA and compost resulted in a significant increase in the total Pb uptake and larger biomass compared to non‐treated plants, respectively. Although this study found that V. unguiculata was the best candidate for Pb accumulation and immobilization among four species, soil remediation was limited to 54 mg/kg in a growing season. We find that it is critically important to perform phytostabilization in a secure manner, since Pb bioavailability of edible plant parts implies the potential risk associated with their unintentional consumption. Efficiently and effectively remediating Pb‐contaminated soils in a low‐cost manner needs to be further studied.
Background: We previously screened 400 elderly Costa Ricans for neurodegenerative disease. Those reporting occupational pesticide exposure (18%) had an increased Parkinson's disease (PD) risk (OR 2.57, 95% CI 0.91-7.26), and worse cognition (Mini-Mental States Exam (MMSE) 24.5 versus 25.9 points, p=0.01). We subsequently measured long-lasting organochlorine pesticides (β-HCH, DDE, DDT, and dieldrin) in a sub-sample ( n=89). Dieldrin and β-HCH have been linked to PD, and DDE to Alzheimer's disease. Methods: We ran regression models for MMSE and tremor-at-rest to assess associations with pesticides in 89 subjects. Results: The percent of β-HCH, DDE, DDT (parent compound for DDE), and dieldrin above their limit of detection (LOD) were 100%, 93%, 75%, and 57%, respectively. Tremor-at-rest was found in 21 subjects, and the mean MMSE was 25. Those who reported occupational pesticide exposure ( n=36) had more detectable dieldrin samples ( p=0.005), and higher mean levels of dieldrin ( p=0.01), than those not reporting exposure. Other pesticides did not differ between those with and without self-reported occupational exposure. There was a positive but non-significant trend of higher risk for tremor-at-rest with higher dieldrin ( p=0.10 for linear trend). Neither DDE nor DDT showed a relationship with MMSE. However, after excluding two outliers with the lowest MMSE scores, higher DDT levels showed some modest association with lower MMSE ( p=0.09 for linear trend). Conclusions: Our data are limited by small sample size. However, dieldrin was high in our population, has been previously linked to PD, and could be partly responsible for the excess PD risk seen in our population.
Background: While several studies have shown an association between environmental pollutants and diabetes among non-pregnant adults, few studies have prospectively assessed the association among pregnant women. We estimated the association between maternal pre-pregnancy levels of a polybrominated biphenyl (PBB 153) and 36 polychlorinated biphenyls (PCBs) with gestational diabetes (GDM).
Methods: Data are from women (18-40 years) participating in a prospective cohort who achieved pregnancy lasting ≥24 weeks gestation and completed monthly pregnancy journals (n = 258). Women were recruited between 2005 and 2007 from 16 counties in Michigan and Texas. Women who ever reported a physician diagnosis of high blood glucose in monthly pregnancy journals were categorized as having gestational diabetes (n = 28; 10.9 %). Multivariable binary logistic regression was used to estimate odds ratios (OR) and 95 % confidence intervals (CIs).
Results: There was no association between PBB 153 and GDM or any of the PCB congeners and GDM in unadjusted models. All associations remained non-significant with stepwise adjustment for age and waist-to-height ratio. Only with further adjustment for total serum lipids did the associations become significant, with lower levels of nine PCB congeners associated with GDM: 138, 153, 156, 167, 170, 172, 178, 180, and 194. The adjusted ORs for PCBs 170 and 180 were the strongest: 0.40 (0.18, 0.88) and 0.41 (0.19, 0.87), respectively.
Conclusions: Pre-pregnancy levels of PCBs were not consistently associated with development of GDM in this prospective cohort of U.S. women. Interestingly, we found that although women with GDM had higher mean pre-pregnancy circulating lipid levels compared to women without GDM, they had lower wet weight circulating levels of many PCBs. More research is needed to understand the dynamic fluctuations of PCBs and other persistent organic pollutants between lipid compartments in women preparing to conceive and throughout pregnancy.
Serum concentrations of PBDEs were measured using gas chromatography-tandem mass spectrometry in 80 children aged 15-71 months. Demographic and behavioral data were collected on parental questionnaires; a research nurse recorded anthropometric measures and insurance status. For a subset of children (n = 17), PBDEs were measured in house dust and child handwipes sampled during a home visit. In linear and Tobit regression, log-transformed PBDE congeners were modeled as a function of child characteristics, including neighborhood-level socioeconomic indicators. BDE congeners 47, 99, and 100 were highly correlated and summed for analysis; BDE-153 was examined individually. PBDE serum concentrations were associated with socioeconomic factors; for example, a $20,000 increase in median household income in a child's ZIP code was associated with a 34% decrease (95%CI = 14-49%) in BDE-153 and a 26% decrease (95%CI = 6-42%) in -BDE-47,-99,-100. Lower body-mass index (BMI) z-score and household smoking were strong predictors of higher BDE-153 levels. Among children who participated in a home visit, serum PBDE was positively correlated with handwipe PBDE (Spearman r -BDE-47, -99, -100 = 0.48, p = 0.09), but not dust PBDE. Results indicate socioeconomic factors and BMI are strong predictors of serum PBDE levels among young children. PBDEs measured on handwipes are more predictive of serum PBDE levels than vacuum-collected dust.
Limited data are available on the non-chemical stressors that impact adult exposures to pyrethroid insecticides based on urinary biomonitoring. The urinary metabolite, 3-phenoxybenzoic acid (3-PBA), is commonly used to assess human exposure to a number of pyrethroids. In a further analysis of published study data, we quantified urinary 3-PBA levels of 50 adults over a single, 24-h sampling period and examined the associations between the biomarker measurements and selected non-chemical stressors (demographic, lifestyle, and dietary factors). A convenience sample of 50 adults was recruited in North Carolina in 2009-2011. Participants collected individual urine voids (up to 11) and filled out activity, food, and pesticide use diaries over a 24-h sampling period. Urine voids (n = 326) were analyzed for 3-PBA concentrations using high-performance liquid chromatography-tandem mass spectrometry. 3-PBA was detected in 98% of the 24-h composited urine samples. The geometric mean urinary 3-PBA level was 1.68 ng/mL in adults. Time spent outside (p = 0.0006) was a highly significant predictor of natural log-transformed (ln) urinary 3-PBA levels, while consumption of coffee (p = 0.007) and breads (p = 0.019) and ln creatinine levels (p = 0.037) were significant predictors of urinary 3-PBA levels. In conclusion, we identified specific factors that substantially increased adult exposures to pyrethroids in their everyday environments.
Background: Perfluoroalkyl substances have been associated with changes in menstrual cycle characteristics and fecundity, when modeled separately. However, these outcomes are biologically related, and we evaluate their joint association with exposure to perfluoroalkyl substances. Methods: We recruited 501 couples from Michigan and Texas in 2005-2009 upon their discontinuing contraception and followed them until pregnancy or 12 months of trying. Female partners provided a serum sample on enrollment and completed daily journals on menstruation, intercourse, and pregnancy test results. We measured seven perfluoroalkyl substances in serum using liquid chromatography-tandem mass spectrometry. We assessed the association between perfluoroalkyl substances and menstrual cycle length using accelerated failure time models and between perfluoroalkyl substances and fecundity using a Bayesian joint modeling approach to incorporate cycle length. Results: Menstrual cycles were 3% longer comparing women in the second versus first tertile of perfluorodecanoate (PFDeA; acceleration factor [AF] = 1.03, 95% credible interval [CrI] = [1.00, 1.05]), but 2% shorter for women in the highest versus lowest tertile of perfluorooctanoic acid (PFOA; AF = 0.98, 95% CrI = [0.96, 1.00] ). When accounting for cycle length, relevant covariates, and remaining perfluoroalkyl substances, the probability of pregnancy was lower for women in second versus first tertile of perfluorononanoate (PFNA; odds ratio [OR] = 0.6, 95% CrI = [0.4, 1.0] ) although not when comparing the highest versus lowest (OR = 0.7, 95% CrI = [0.3, 1.1]) tertile. Conclusions: In this prospective cohort study, we observed associations between two perfluoroalkyl substances and menstrual cycle length changes, and between select perfluoroalkyl substances and diminished fecundity at some (but not all) concentrations. See video abstract at, http://links.lww.com/EDE/B136.
BACKGROUND: Although indoor residual spraying (IRS) is an effective tool for malaria control, its use contributes to high insecticide exposure in sprayed communities and raises concerns about possible unintended health effects. OBJECTIVE: The Venda Health Examination of Mothers, Babies and their Environment (VHEMBE) is a birth cohort study initiated in 2012 to characterize prenatal exposure to IRS insecticides and exposures’ impacts on child health and development in rural South Africa. METHODS: In this report, we describe the VHEMBE cohort and dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenyldichloroethylene (DDE) serum concentrations measured in VHEMBE mothers when they presented for delivery. In addition, we applied a causal inference framework to estimate the potential reduction in population-level p,p 0 -DDT and p,p 0 -DDE serum concentrations under five hypothetical interventions. A total of 751 mothers were enrolled. RESULTS: Serum concentrations of p,p 0 isomers of DDT and DDE were above the limit of detection (LOD) in ≥98% of the samples, whereas the o,p 0 isomers were above the LOD in at least 80% of the samples. Median (interquartile range) p,p 0 -DDT and p,p 0 -DDE serum concentrations for VHEMBE cohort participants were 55.3 (19.0–259.3) and 242.2 (91.8–878.7) ng/g-lipid, respectively. Mothers reporting to have lived in a home sprayed with DDT for malaria control had ∼ 5–7 times higher p,p 0 -DDT and p,p 0 -DDE serum concentrations than those who never lived in a home sprayed with DDT. Of the five potential interventions tested, we found increasing access to water significantly reduced p,p 0 -DDT exposure and increasing the frequency of household wet mopping significantly reduced p,p 0 -DDT and p,p 0 -DDE exposure. CONCLUSION: Our findings suggest that several intervention approaches may reduce DDT/DDE exposure in pregnant women living in IRS communities.
Physiological Reports published by Wiley Periodicals, Inc. on behalf of the American Physiological Society and The Physiological Society.Inhalation of cadmium (Cd) is associated with lung diseases, but less is known concerning pulmonary effects of Cd found in the diet. Cd has a decades-long half-life in humans and significant bioaccumulation occurs with chronic dietary intake. We exposed mice to low-dose CdCl2 (10 mg/L in drinking water) for 20 weeks, which increased lung Cd to a level similar to that of nonoccupationally exposed adult humans. Cd-treated mice had increased airway hyperresponsiveness to methacholine challenge, and gene expression array showed that Cd altered the abundance of 443 mRNA transcripts in mouse lung. In contrast to higher doses, low-dose Cd did not elicit increased metallothionein transcripts in lung. To identify pathways most affected by Cd, gene set enrichment of transcripts was analyzed. Results showed that major inducible targets of low-dose Cd were neuronal receptors represented by enriched olfactory, glutamatergic, cholinergic, and serotonergic gene sets. Olfactory receptors regulate chemosensory function and airway hypersensitivity, and these gene sets were the most enriched. Targeted metabolomics analysis showed that Cd treatment also increased metabolites in pathways of glutamatergic (glutamate), serotonergic (tryptophan), cholinergic (choline), and catecholaminergic (tyrosine) receptors in the lung tissue. Protein abundance measurements showed that the glutamate receptor GRIN2A was increased in mouse lung tissue. Together, these results show that in mice, oral low-dose Cd increased lung Cd to levels comparable to humans, increased airway hyperresponsiveness and disrupted neuronal pathways regulating bronchial tone. Therefore, dietary Cd may promote or worsen airway hyperresponsiveness in multiple lung diseases including asthma.