The authors regret the omission of one of the authors, Manjaly J. Ajitha, from the original manuscript. The corrected list of authors and affiliations for this paper is as shown above. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.
A dinuclear Co(ii) complex supported by a modular, tunable redox-active ligand system is capable of selective C-H amination to form indolines from aryl azides in good yields at low (1 mol%) catalyst loading. The reaction is tolerant of medicinally relevant heterocycles, such as pyridine and indole, and can be used to form 5-, 6-, and 7-membered rings. The synthetic versatility obtained using low loadings of an earth abundant transition metal complex represents a significant advance in catalytic C-H amination technology.
Key mechanistic features of the cobalt-mediated and aminoquinoline-directed dehydrogenative aryl–aryl coupling were investigated computationally and experimentally. A series of CoII and CoIII complexes relevant to the proposed reaction cycle have been synthesized and characterized. Stoichiometric reactions and electrochemical studies were used to probe the role of different additives in the reaction pathway. Computationally, three different mechanisms, such as charge neutral, anionic, and dimetallic were explored. It is shown that the mono-metallic anionic and charge neutral mechanisms are the most favorable ones, among which the former mechanism is slightly more encouraging and proceeds via the: (a) concerted-metalation-deprotonation (CMD) of the first benzamide C–H bond, (b) PivOH-to-PivO– rearrangement, (c) CMD of the second benzamide C–H bond, (d) C–C coupling, (e) product formation facilitated by the amide nitrogen re-protonation, and (f) catalyst regeneration. The rate-determining step of this multi-step process is the C–C coupling step. The computational studies suggest that the electronics of both the aryl-benzamide and pyridine fragments of the aminoquinoline-benzamide ligand control the efficiency of the reaction.
Doctoral recipients in the biomedical sciences and STEM fields are showing increased interest in career opportunities beyond academic positions. While recent research has addressed the interests and preferences of doctoral trainees for non-academic careers, the strategies and resources that trainees use to prepare for a broad job market (non-academic) are poorly understood. The recent adaptation of the Social Cognitive Career Theory to explicitly highlight the interplay of contextual support mechanisms, individual career search efficacy, and self-adaptation of job search processes underscores the value of attention to this explicit career phase. Our research addresses the factors that affect the career search confidence and job search strategies of doctoral trainees with non-academic career interests and is based on nearly 900 respondents from an NIH-funded survey of doctoral students and postdoctoral fellows in the biomedical sciences at two U.S. universities. Using structural equation modeling, we find that trainees pursuing non-academic careers, and/or with low perceived program support for career goals, have lower career development and search process efficacy (CDSE), and receive different levels of support from their advisors/supervisors. We also find evidence of trainee adaptation driven by their career search efficacy, and not by career interests.
The title compound, C8H17NO, crystallizes with two independent molecules in the asymmetric unit. In the crystal, intermolecular N—H⋯O hydrogen bonding is observed between neighboring molecules, forming continuous molecular chains along the c-axis direction.