The Department of Veterans Affairs (VA) initiative to enhance recruitment of diverse biomedical scientists from Historically Black Colleges and Universities (HBCUs) through the VA Career Development Program has provided a unique opportunity for HBCUs to partner with VA to strengthen diversity recruitment efforts. The Atlanta VA Health Care System and the Morehouse School of Medicine (MSM) enjoy a productive and growing interinstitutional collaboration. The partnership between the Atlanta VA and MSM provides the unique opportunity for MSM to increase research opportunities for faculty and students while providing a pipeline of diverse candidates for the Atlanta VA to enhance recruitment of diverse HCBU biomedical scientists. This relationship led to the creation of an inaugural HBCU Core Recruitment Site (CRS) at MSM and the Atlanta VA. The CRS provides a pathway to identify and recruit young diverse investigators who are eligible to compete for VA Career Development Award funding. This Atlanta VA/MSM CRS initiative established a pipeline program to further enhance diversity in the VA scientific workforce. In this review, the Atlanta VA/MSM CRS is presented as a potential model for maximizing the VA initiative to enhance the recruitment of diverse candidates from HBCUs.
Pulmonary hypertension (PH) is a progressive disorder that causes significant morbidity and mortality despite existing therapies. PH pathogenesis is characterized by metabolic derangements that increase pulmonary artery smooth muscle cell (PASMC) proliferation and vascular remodeling. PH-associated decreases in peroxisome proliferator-activated receptor g (PPARg) stimulate PASMC proliferation, and PPARg in coordination with PPARg coactivator 1a (PGC1a) regulates mitochondrial gene expression and biogenesis. To further examine the impact of decreases in PPARg expression on human PASMC (HPASMC) mitochondrial function, we hypothesized that depletion of either PPARg or PGC1a perturbs mitochondrial structure and function to stimulate PASMC proliferation. To test this hypothesis, HPASMCs were exposed to hypoxia and treated pharmacologically with the PPARg antagonist GW9662 or with siRNA against PPARg or PGC1a for 72 hours. HPASMC proliferation (cell counting), target mRNA levels (qRT-PCR), target protein levels (Western blotting), mitochondria-derived H 2 O 2 (confocal immunofluorescence), mitochondrial mass and fragmentation, and mitochondrial bioenergetic profiling were determined. Hypoxia or knockdown of either PPARg or PGC1a increased HPASMC proliferation, enhanced mitochondria-derived H 2 O 2 , decreased mitochondrial mass, stimulated mitochondrial fragmentation, and impaired mitochondrial bioenergetics. Taken together, these findings provide novel evidence that loss of PPARg diminishes PGC1a and stimulates derangements in mitochondrial structure and function that cause PASMC proliferation. Overexpression of PGC1a reversed hypoxia-induced HPASMC derangements. This study identifies additional mechanistic underpinnings of PH, and provides support for the notion of activating PPARg as a novel therapeutic strategy in PH.
Rationale: Airway hyperresponsiveness (AHR) is classically found in asthma, and persistent AHR is associated with poor asthma control. Although airway smooth muscle (ASM) cells play a critical pathophysiologic role in AHR, the paracrine contributions of surrounding cells such as fibroblasts to the contractile phenotype of ASM cells have not been examined fully. This study addresses the hypothesis that nicotine promotes a contractile ASM cell phenotype by stimulating fibroblasts to increase nerve growth factor (NGF) secretion into the environment.
by
Ciprian B. Anea;
Maoxiang Zhang;
Feng Chen;
M. Irfan Ali;
Charles Hart;
David W. Stepp;
Yevgeniy O. Kovalenkov;
Ana-Maria Merloiu;
Paramita Pati;
David Fulton;
R. Daniel Rudic
Recent studies have shown that circadian clock disruption is associated with pathological remodeling in the arterial structure and vascular stiffness. Moreover, chronic circadian disruption is associated with dysfunction in endothelial responses and signaling. Reactive oxygen species have emerged as key regulators in vascular pathology. Previously, we have demonstrated that circadian clock dysfunction exacerbates superoxide production through eNOS uncoupling. To date, the impact of circadian clock mutation on vascular NADPH oxidase expression and function is not known. The goal in the current study was to determine if the circadian clock controls vascular Nox4 expression and hydrogen peroxide formation in arteries, particularly in endothelial and vascular smooth muscle cells. In aorta, there was an increase in hydrogen peroxide and Nox4 expression in mice with a dysfunctional circadian rhythm (Bmal1-KO mice). In addition, the Nox4 gene promoter is activated by the core circadian transcription factors. Lastly, in synchronized cultured human endothelial cells, Nox4 gene expression exhibited rhythmic oscillations. These data reveal that the circadian clock plays an important role in the control of Nox4 and disruption of the clock leads to subsequent production of reaction oxygen species.
Transforming growth factor-β1 (TGF-β1) and thrombospondin-1 (TSP-1) are hypoxia-responsive mitogens that promote vascular smooth muscle cell (SMC) proliferation, a critical event in the pathogenesis of pulmonary hypertension (PH). We previously demonstrated that hypoxia-induced human pulmonary artery smooth muscle (HPASMC) cell proliferation and expression of the NADPH oxidase subunit, Nox4, were attenuated by the peroxisome proliferator-activated receptor γ (PPARγ) agonist, rosiglitazone. The current study examines the hypothesis that rosiglitazone regulates Nox4 expression and HPASMC proliferation by attenuating TSP-1 signaling. Selected HPASMC were exposed to normoxic or hypoxic (1% O 2 ) environments or TSP-1 (0-1 μg/ ml) for 72 hours ± administration of rosiglitazone (10 μM). Cellular proliferation, Nox4, TSP-1, and TGF-β1 expression and reactive oxygen species generation were measured. Mice exposed to hypoxia (10% O 2 ) for three weeks were treated with rosiglitazone (10 mg/kg/day) for the final 10 days, and lung TSP-1 expression was examined. Hypoxia increased TSP-1 and TGF-β1 expression and HPASMC proliferation, and neutralizing antibodies to TSP-1 or TGF-β1 attenuated proliferation. Rosiglitazone attenuated hypoxia-induced HPASMC proliferation and increases in mouse lung and HPASMC TSP-1 expression, but failed to reduce increases in TGF-β1 expression or Nox4 expression and activity caused by direct TSP-1 stimulation. Transfecting HPASMC with siRNA to Nox4 attenuated hypoxia-or TSP-1-stimulated HPASMC proliferation. These findings provide novel evidence that TSP-1-mediated Nox4 expression plays a critical role in hypoxia-induced HPASMC proliferation. PPARγ activation with exogenous ligands attenuates TSP-1 expression to reduce Nox4 expression. These results clarify mechanisms of hypoxia-induced SMC proliferation and suggest additional pathways by which PPARγ agonists may regulate critical steps in the pathobiology of PH.
Pulmonary hypertension (PH) is a serious disorder that causes significant morbidity and mortality. The pathogenesis of PH involves complex derangements in multiple pathways including reductions in peroxisome proliferator-activated receptor gamma (PPARγ). Hypoxia, a common PH stimulus, reduces PPARγ in experimental models. In contrast, activating PPARγ attenuates hypoxia-induced PH and endothelin 1 (ET-1) expression. To further explore mechanisms of hypoxia-induced PH and reductions in PPARγ, we examined the effects of hypoxia on selected microRNA (miRNA or miR) levels that might reduce PPARγ expression leading to increased ET-1 expression and PH. Our results demonstrate that exposure to hypoxia (10% O 2 ) for 3-weeks increased levels of miR-27a and ET-1 in the lungs of C57BL/6 mice and reduced PPARγ levels. Hypoxia-induced increases in miR-27a were attenuated in mice treated with the PPARγ ligand, rosiglitazone (RSG, 10 mg/kg/d) by gavage for the final 10 d of exposure. In parallel studies, human pulmonary artery endothelial cells (HPAECs) were exposed to control (21% O 2 ) or hypoxic (1% O 2 ) conditions for 72 h. Hypoxia increased HPAEC proliferation, miR-27a and ET-1 expression, and reduced PPARγ expression. These alterations were attenuated by treatment with RSG (10 μM) during the last 24 h of hypoxia exposure. Overexpression of miR-27a or PPARγ knockdown increased HPAEC proliferation and ET-1 expression and decreased PPARγ levels, whereas these effects were reversed by miR-27a inhibition. Further, compared to lungs from littermate control mice, miR-27a levels were upregulated in lungs from endothelial-targeted PPARγ knockout (ePPARγ KO) mice. Knockdown of either SP1 or E GR1 was sufficient to significantly attenuate miR-27a expression in HPAECs. Collectively, these studies provide novel evidence that miR-27a and PPARγ mediate mutually repressive actions in hypoxic pulmonary vasculature and that targeting PPARγ may represent a novel therapeutic approach in PH to attenuate proliferative mediators that stimulate proliferation of pulmonary vascular cells.
Pulmonary hypertension (PH) occurs when the pulmonary vasculature is itself diseased or becomes affected secondarily by comorbid conditions, commonly left heart or lung disease. The high prevalence of chronic cardiopulmonary conditions among patients served by Veterans Health Administration (VHA) suggests this population may be particularly susceptible to PH. We sought to identify clinical features and outcomes in veterans diagnosed with PH. We utilized the VHA Corporate Data Warehouse to identify veterans diagnosed between January 1, 2003 and September 30, 2015, assess relevant patient characteristics and their survival time. The effects of PH subtype and baseline factors on outcome were estimated by Cox modeling. There were 110,564 veterans diagnosed with PH during the study period. These veterans were predominantly male, had median age 70.2, and had a high burden of comorbid conditions. PH was frequently due to left heart and/or lung disease. Average survival after PH diagnosis was 3.88 years. Compared with other types, PH due to left heart disease, lung disease or both had shorter survival. This large retrospective study of veterans demonstrates the significance of PH due to left heart and/or lung disease which was common and had high risk of death. Multi-comorbidity was common and added to risk. These findings underscore the need for risk assessment tools for subjects with non-Group 1 PH and novel management strategies to improve their outcome. This study details the largest retrospective cohort assembled for evaluation of secondary PH and allows hypothesis-generating inquiries into these common conditions that are rarely prospectively studied.
Pulmonary hypertension (PH) is a progressive and often fatal disorder whose pathogenesis involves pulmonary artery smooth muscle cell (PASMC) proliferation. Although modern PH therapies have significantly improved survival, continued progress rests on the discovery of novel therapies and molecular targets. MicroRNA (miR)-21 has emerged as an important non-coding RNA that contributes to PH pathogenesis by enhancing vascular cell proliferation, however little is known about available therapies that modulate its expression. We previously demonstrated that peroxisome proliferator-activated receptor gamma (PPARγ) agonists attenuated hypoxia-induced HPASMC proliferation, vascular remodeling and PH through pleiotropic actions on multiple targets, including transforming growth factor (TGF)-β1 and phosphatase and tensin homolog deleted on chromosome 10 (PTEN). PTEN is a validated target of miR-21. We therefore hypothesized that antiproliferative effects conferred by PPARγ activation are mediated through inhibition of hypoxia-induced miR-21 expression. Human PASMC monolayers were exposed to hypoxia then treated with the PPARγ agonist, rosiglitazone (RSG,10 μM), or in parallel, C57Bl/6J mice were exposed to hypoxia then treated with RSG. RSG attenuated hypoxic increases in miR-21 expression in vitro and in vivo and abrogated reductions in PTEN and PASMC proliferation. Antiproliferative effects of RSG were lost following siRNA-mediated PTEN depletion. Furthermore, miR-21 mimic decreased PTEN and stimulated PASMC proliferation, whereas miR-21 inhibition increased PTEN and attenuated hypoxia-induced HPASMC proliferation. Collectively, these results demonstrate that PPARγ ligands regulate proliferative responses to hypoxia by preventing hypoxic increases in miR-21 and reductions in PTEN. These findings further clarify molecular mechanisms that support targeting PPARγ to attenuate pathogenic derangements in PH.
Pulmonary hypertension (PH) is a progressive disorder of the pulmonary circulation associated with significant morbidity and mortality. The pathobiology of PH involves a complex series of derangements causing endothelial dysfunction, vasoconstriction and abnormal proliferation of pulmonary vascular wall cells that lead to increases in pulmonary vascular resistance and pressure. Recent evidence indicates that the ligand-activated transcription factor, peroxisome proliferator-activated receptor gamma (PPARγ) can have a favorable impact on a variety of pathways involved in the pathogenesis of PH. This review summarizes PPARγ biology and the emerging evidence that therapies designed to activate this receptor may provide novel approaches to the treatment of PH. Mediators of PH that are regulated by PPARγ are reviewed to provide insights into potential mechanisms underlying therapeutic effects of PPARγ ligands in PH.
Peroxisome proliferator-activated receptors (PPARs) are ligand-activated transcription factors belonging to the nuclear hormone receptor superfamily that regulate diverse physiological processes ranging from lipogenesis to inflammation. Recent evidence has established potential roles of PPARs in both systemic and pulmonary vascular disease and function. Existing treatment strategies for pulmonary hypertension, the most common manifestation of pulmonary vascular disease, are limited by an incomplete understanding of the underlying disease pathogenesis and lack of efficacy indicating an urgent need for new approaches to treat this disorder. Derangements in pulmonary endothelial-derived mediators and endothelial dysfunction have been shown to play a pivotal role in pulmonary hypertension pathogenesis. Therefore, the following review will focus on selected mediators implicated in pulmonary vascular dysfunction and evidence that PPARs, in particular PPARγ, participate in their regulation and may provide a potential novel therapeutic target for the treatment of pulmonary hypertension.