Prenatal exposure to single chemicals belonging to the per- and polyfluoroalkyl substances (PFAS) family is associated with biological perturbations in the mother, fetus, and placenta, plus adverse health outcomes. Despite our knowledge that humans are exposed to multiple PFAS, the potential joint effects of PFAS on the metabolome remain largely unknown. Here, we leveraged high-resolution metabolomics to identify metabolites and metabolic pathways perturbed by exposure to a PFAS mixture during pregnancy. Targeted assessment of perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorooctanesulfonic acid (PFOS), and perfluorohexanesulfonic acid (PFHxS), along with untargeted metabolomics profiling, were conducted on nonfasting serum samples collected from pregnant African Americans at 6–17 weeks gestation. We estimated the overall mixture effect and partial effects using quantile g-computation and single-chemical effects using linear regression. All models were adjusted for maternal age, education, parity, early pregnancy body mass index, substance use, and gestational weeks at sample collection. Our analytic sample included 268 participants and was socioeconomically diverse, with the majority receiving public health insurance (78%). We observed 13.3% of the detected metabolic features were associated with the PFAS mixture (n = 1705, p < 0.05), which was more than any of the single PFAS chemicals. There was a consistent association with metabolic pathways indicative of systemic inflammation and oxidative stress (e.g., glutathione, histidine, leukotriene, linoleic acid, prostaglandins, and vitamins A, C, D, and E metabolism) across all metabolome-wide association studies. Twenty-six metabolites were validated against authenticated compounds and associated with the PFAS mixture (p < 0.05). Based on quantile g-computation weights, PFNA contributed the most to the overall mixture effect for γ-aminobutyric acid (GABA), tyrosine, and uracil. In one of the first studies of its kind, we demonstrate the feasibility and utility of using methods designed for exposure mixtures in conjunction with metabolomics to assess the potential joint effects of multiple PFAS chemicals on the human metabolome. We identified more pronounced metabolic perturbations associated with the PFAS mixture than for single PFAS chemicals. Taken together, our findings illustrate the potential for integrating environmental mixture analyses and high-throughput metabolomics to elucidate the molecular mechanisms underlying human health.
Background
Prenatal exposure to phthalates, a group of synthetic chemicals widely used in consumer products, has previously been associated with adverse infant and child development. Studies also suggest that maternal depression and anxiety, may amplify the harmful effects of phthalates on infant and child neurodevelopment.
Study design
Our analysis included a subset of dyads enrolled in the Atlanta African American Maternal-Child Cohort (N = 81). We measured eight phthalate metabolites in first and second trimester (8–14 weeks and 24–32 weeks gestation) maternal urine samples to estimate prenatal exposures. Phthalate metabolite concentrations were averaged across visits and natural log-transformed for analysis. Maternal symptoms of depression and anxiety were assessed using validated questionnaires (Edinberg Postnatal Depression Scale and State Trait Anxiety Inventory, respectively) and the total score on each scale was averaged across study visits. The NICU Network Neurobehavioral Scale (NNNS) was administered at two weeks of age. Our primary outcomes included two composite NNNS scores reflecting newborn attention and arousal. Linear regression was used to estimate associations between individual phthalate exposures and newborn attention and arousal. We assessed effect modification by maternal depression and anxiety.
Results
Higher levels of urinary phthalate metabolites were not associated with higher levels of infant attention and arousal, but true associations may still exist given the limited power of this analysis. In models examining effect modification by maternal depression, we observed that an interquartile range increase in mono (2-ethlyhexyl) phthalate (MEHP), mono (2-ethyl-5-oxohexyl) phthalate (MEOHP), and mono (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) was associated with a significant increase in newborn arousal only among those with high depressive symptoms (MEHP: β = 0.71, 95% confidence interval [CI] = 0.10, 1.32 for high, β = −0.30, 95% CI = −0.73, 0.12 for low; MEOHP: β = 0.60, 95% CI = −0.03, 1.23 for high, β = −0.12, 95% CI = −0.58, 0.33 for low; MEHHP: β = 0.54, 95% CI = −0.04, 1.11 for high, β = −0.11, 95% CI = −0.54, 0.32 for low). Similar patterns were observed in models stratified by maternal anxiety, although CIs were wide.
Conclusion
Our results suggest maternal anxiety and depression symptoms may exacerbate the effect of phthalates on infant neurodevelopment. Future studies are needed to determine the optimal levels of attention and arousal in early infancy.
Chemical and microbiological drinking water contaminants pose risks to child health but are not often evaluated concurrently. At two consecutive visits to 96 households in Piura, Peru, we collected drinking water samples, administered health and exposure questionnaires, and collected infant stool samples. Standard methods were used to quantify heavy metals/metalloids, pesticides, and Escherichia coli concentrations in water samples. Stool samples were assayed for bacterial, viral, and parasitic enteropathogens. The primary drinking water source was indoor piped water for 70 of 96 households (73%); 36 households (38%) stored drinking water from the primary source in containers in the home. We found high prevalence of chemical and microbiological contaminants in household drinking water samples: arsenic was detected in 50% of 96 samples, ≥ 1 pesticide was detected in 65% of 92 samples, and E. coli was detected in 37% of 319 samples. Drinking water samples that had been stored in containers had higher odds of E. coli detection (adjusted odds ratio [aOR]: 4.50; 95% CI: 2.04–9.95) and pesticide detection (OR: 6.55; 95% CI: 2.05–21.0) compared with samples collected directly from a tap. Most infants (68%) had ≥ 1 enteropathogen detected in their stool. Higher odds of enteropathogen infection at the second visit were observed among infants from households where pesticides were detected in drinking water at the first visit (aOR: 2.93; 95% CI: 1.13–7.61). Results show concurrent risks of exposure to microbiological and chemical contaminants in drinking water in a low-income setting, despite high access to piped drinking water.
Pneumonia is a leading killer of children younger than 5 years despite high vaccination coverage, improved nutrition, and widespread implementation of the Integrated Management of Childhood Illnesses algorithm. Assessing the effect of interventions on childhood pneumonia is challenging because the choice of case definition and surveillance approach can affect the identification of pneumonia substantially. In anticipation of an intervention trial aimed to reduce childhood pneumonia by lowering household air pollution, we created a working group to provide recommendations regarding study design and implementation. We suggest to, first, select a standard case definition that combines acute (≤14 days) respiratory symptoms and signs and general danger signs with ancillary tests (such as chest imaging and pulse oximetry) to improve pneumonia identification; second, to prioritise active hospital-based pneumonia surveillance over passive case finding or home-based surveillance to reduce the risk of non-differential misclassification of pneumonia and, as a result, a reduced effect size in a randomised trial; and, lastly, to consider longitudinal follow-up of children younger than 1 year, as this age group has the highest incidence of severe pneumonia.
Background: Benzene is a known occupational carcinogen associated with increased risk of hematologic cancers, but the relationships between quantity of passive benzene exposure through residential proximity to toxic release sites, duration of exposure, lag time from exposure to cancer development, and lymphoma risk remain unclear. Methods: We collected release data through the Environmental Protection Agency's Toxics Release Inventory (TRI) from 1989 to 2003, which included location of benzene release sites, years when release occurred, and amount of release. We also collected data on incident cases of non-Hodgkin lymphoma (NHL) from the Georgia Comprehensive Cancer Registry (GCCR) for the years 1999-2008. We constructed distance-decay surrogate exposure metrics and Poisson and negative binomial regression models of NHL incidence to quantify associations between passive exposure to benzene and NHL risk and examined the impact of amount, duration of exposure, and lag time on cancer development. Akaike's information criteria (AIC) were used to determine the scaling factors for benzene dispersion and exposure periods that best predicted NHL risk. Results: Using a range of scaling factors and exposure periods, we found that increased levels of passive benzene exposure were associated with higher risk of NHL. The best fitting model, with a scaling factor of 4 kilometers (km) and exposure period of 1989-1993, showed that higher exposure levels were associated with increased NHL risk (Level 4 (1.1-160 kilograms (kg)) vs. Level 1: risk ratio 1.56 [1.44-1.68], Level 5 (>160 kg) vs. Level 1: 1.60 [1.48-1.74]). Conclusions: Higher levels of passive benzene exposure are associated with increased NHL risk across various lag periods. Additional epidemiological studies are needed to refine these models and better quantify the expected total passive benzene exposure in areas surrounding release sites.
We conducted a cross-sectional study to assess the relationship between pesticide exposures and testosterone levels in 133 male Thai farmers. Urine and serum samples were collected concurrently from participants. Urine was analyzed for levels of specific and nonspecific metabolites of organophosphates (OPs), pyrethroids, select herbicides, and fungicides. Serum was analyzed for total and free testosterone. Linear regression analyses revealed significant negative relationships between total testosterone and the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) after controlling for covariates (eg, age, BMI, smoking status). Positive significant associations were found between some OP pesticides and total testosterone. Due to the small sample size and the observational nature of the study, future investigation is needed to confirm our results and to elucidate the biological mechanisms.
Prenatal organophosphate (OP) pesticide exposure has been reported to be associated with adverse birth outcomes and neurodevelopment. However, the mechanisms of toxicity of OP pesticides on human fetal development have not yet been elucidated. Our pilot study birth cohort, the Study of Asian Women and Offspring's Development and Environmental Exposures (SAWASDEE cohort) aimed to evaluate environmental chemical exposures and their relation to birth outcomes and infant neurodevelopment in 52 pregnant farmworkers in Fang district, Chiang Mai province, Thailand. A large array of data was collected multiple times during pregnancy including approximately monthly urine samples for evaluation of pesticide exposure, three blood samples for pesticide-related enzyme measurements and questionnaire data. This study investigated the changes in maternal acetylcholinesterase (AChE) and paraoxonase 1 (PON1) activities and their relation to urinary diakylphosphates (DAPs), class-related metabolites of OP pesticides, during pregnancy. Maternal AChE, butyrylcholinesterase (BChE) and PON1 activities were measured three times during pregnancy and urinary DAP concentrations were measured, on average, 8 times from enrollment during pregnancy until delivery. Among the individuals in the group with low maternal PON1 activity (n=23), newborn head circumference was negatively correlated with log<inf>10</inf> maternal ∑DEAP and ∑DAP at enrollment (gestational age=12±3 weeks; β=-1.0cm, p=0.03 and β=-1.8cm, p<0.01, respectively) and at 32 weeks pregnancy (β=-1.1cm, p=0.04 and β=-2.6cm, p=0.01, respectively). Furthermore, among these mothers, newborn birthweight was also negatively associated with log<inf>10</inf> maternal ∑DEAP and ∑DAP at enrollment (β=-219.7g, p=0.05 and β=-371.3g, p=0.02, respectively). Associations between maternal DAP levels and newborn outcomes were not observed in the group of participants with high maternal PON1 activity. Our results support previous findings from US birth cohort studies. This is the first study to report the associations between prenatal OP pesticide exposure and birth outcomes in Thailand.
We developed a robust analytical method for quantification of malondialdehyde (MDA) in exhaled breath condensate (EBC) via derivatization with 2,4-dinitrophenylhydrazine (DNPH). The target MDA-DNPH hydrazone was separated by ultra-performance liquid chromatography using two reversed-phase analytical columns (C18 and phenyl-hexyl) inter-connected via a two-position, six-port switching valve to a single-quadrupole mass spectrometer. The target derivative was analyzed under positive electrospray ionization using single ion monitoring mode (m/z = 235 for the target derivative, and m/z = 237 for its labeled isotopic analog). This pseudo two-dimensional chromatographic separation provided optimum separation conditions for the target derivative resulting in the limit of detection of 0.58 nM in EBC sample (or 36.2 pmol on-column amount), which is comparable to those reported previously using different techniques, including tandem mass spectrometry. Based on the calibration solutions, the method had a linear quantification range of 1.0–200 nM (r2 = 0.998). The method showed good relative recoveries (92.2–102.0%) and acceptable precisions (3.6–12.2% for inter-day precision, and 4.3–12.4% for intra-day precision for two quality control levels, prepared from 5 nM and 25 nM solutions). The derivative was found to be stable at room temperature for 48 h or during analysis. The method was used to analyze 205 exhaled breath condensate samples collected from individuals from a healthy population of student athletes. MDA was detected in approximately 95% of these samples, with concentrations ranging from 1.16 to 149.63 nM. The median concentration was 6.82 nM, (IQR 4.08–9.88). These data demonstrate that our method can be successfully used to measure MDA in population studies.
Community gardens offer numerous benefits, but there are also potential risks from exposure to chemical contaminants in the soil. Through the lens of the Theory of Planned Behavior, this mixed methods study examined community gardeners’ beliefs and intentions to conduct heavy metal soil testing. The qualitative component involved five focus groups of community garden leaders in Atlanta, Georgia. Qualitative analysis of the focus group data revealed that heavy metal soil contamination was not frequently identified as a common gardening hazard and several barriers limited soil testing in community gardens. The focus group results informed the development of a questionnaire that was administered to 500 community gardeners across the United States. Logistic regression analysis revealed that the soil testing intention was associated with attitude (aOR = 2.46, 95% CI: 1.34, 4.53), subjective norms (aOR = 3.39 95% CI: 2.07, 5.57), and perceived behavioral control (aOR = 1.81, 95% CI: 1.10, 2.99). Study findings have implications for interventions involving community garden risk mitigation, particularly gardens that engage children and vulnerable populations.
Rationale: The spread of severe acute respiratory syndrome coronavirus-2 has suspended many non-COVID-19 related research activities. Where restarting research activities is permitted, investigators need to evaluate the risks and benefits of resuming data collection and adapt procedures to minimize risk. Objectives: In the context of the multicountry Household Air Pollution Intervention (HAPIN) trial conducted in rural, low-resource settings, we developed a framework to assess the risk of each trial activity and to guide protective measures. Our goal is to maximize the integrity of reseach aims while minimizing infection risk based on the latest scientific understanding of the virus. Methods: We drew on a combination of expert consultations, risk assessment frameworks, institutional guidance and literature to develop our framework. We then systematically graded clinical, behavioral, laboratory and field environmental health research activities in four countries for both adult and child subjects using this framework. National and local government recommendations provided the minimum safety guidelines for our work. Results: Our framework assesses risk based on staff proximity to the participant, exposure time between staff and participants, and potential viral aerosolization while performing the activity. For each activity, one of four risk levels, from minimal to unacceptable, is assigned and guidance on protective measures is provided. Those activities that can potentially aerosolize the virus are deemed the highest risk. Conclusions: By applying a systematic, procedure-specific approach to risk assessment for each trial activity, we were able to protect our participants and research team and to uphold our ability to deliver on the research commitments we have made to our staff, participants, local communities, and funders. This framework can be tailored to other research studies conducted in similar settings during the current pandemic, as well as potential future outbreaks with similar transmission dynamics. The trial is registered with clinicaltrials.gov NCT02944682 on October 26. 2016.