Memory-guided navigation relies on hippocampal neurons, like place cells, that encode features of the environment. However, little is known about hippocampal place codes when spatial cues provide ambiguous information about finding goals. Nonplace cells, pyramidal cells that fire without strong spatial modulation in an environment, may be well-suited to carry task-relevant information when spatial information is ambiguous. We find that when spatial cues and goal information are conflicting, nonplace cell firing distinguishes between ambiguous spatial cues. On correct trials nonplace cells had higher firing rates and altered gamma-phase modulation at task-relevant cues than on incorrect trials, while place cells showed no such differences. Finally, this goal discrimination in nonplace cells is absent in a mouse model of Alzheimer's disease that has memory impairment. Our findings show that nonplace cells differentiate ambiguous goal information that place cells do not, revealing a special contribution to coding by these nonplace cells.
Synapse loss and altered synaptic strength are thought to underlie cognitive impairment in Alzheimer's disease (AD) by disrupting neural activity essential for memory. While synaptic dysfunction in AD has been well characterized in anesthetized animals and in vitro, it remains unknown how synaptic transmission is altered during behavior. By measuring synaptic efficacy as mice navigate in a virtual reality task, we find deficits in interneuron connection strength onto pyramidal cells in hippocampal CA1 in the 5XFAD mouse model of AD. These inhibitory synaptic deficits are most pronounced during sharp-wave ripples, network oscillations important for memory that require inhibition. Indeed, 5XFAD mice exhibit fewer and shorter sharp-wave ripples with impaired place cell reactivation. By showing inhibitory synaptic dysfunction in 5XFAD mice during spatial navigation behavior and suggesting a synaptic mechanism underlying deficits in network activity essential for memory, this work bridges the gap between synaptic and neural activity deficits in AD.
Introduction: We and collaborators discovered that flickering lights and sound at gamma frequency (40 Hz) reduce Alzheimer's disease (AD) pathology and alter immune cells and signaling in mice. To determine the feasibility of this intervention in humans we tested the safety, tolerability, and daily adherence to extended audiovisual gamma flicker stimulation. Methods: Ten patients with mild cognitive impairment due to underlying AD received 1-hour daily gamma flicker using audiovisual stimulation for 4 or 8 weeks at home with a delayed start design. Results: Gamma flicker was safe, tolerable, and adherable. Participants’ neural activity entrained to stimulation. Magnetic resonance imaging and cerebral spinal fluid proteomics show preliminary evidence that prolonged flicker affects neural networks and immune factors in the nervous system. Discussion: These findings show that prolonged gamma sensory flicker is safe, tolerable, and feasible with preliminary indications of immune and network effects, supporting further study of gamma stimulation in AD.
Many neurodegenerative and neurological diseases are rooted in dysfunction of the neuroimmune system; therefore, manipulating this system has strong therapeutic potential. Prior work has shown that exposing mice to flickering lights at 40 Hz drives gamma frequency (~40 Hz) neural activity and recruits microglia, the primary immune cells of the brain, revealing a novel method to manipulate the neuroimmune system. However, the biochemical signaling mechanisms between 40 Hz neural activity and immune recruitment remain unknown. Here, we exposed wild-type male mice to 5–60 min of 40 Hz or control flicker and assessed cytokine and phosphoprotein networks known to play a role in immune function. We found that 40 Hz flicker leads to increases in the expression of cytokines which promote microglial phagocytic states, such as IL-6 and IL-4, and increased expression of microglial chemokines, such as macrophage-colony-stimulating factor and monokine induced by interferon-γ.
Interestingly, cytokine effects differed as a function of stimulation frequency, revealing a range of neuroimmune effects of stimulation. To identify possible mechanisms underlying cytokine expression, we quantified the effect of the flicker on intracellular signaling pathways known to regulate cytokine levels. We found that a 40 Hz flicker upregulates phospho-signaling within the nuclear factor κ-light-chain-enhancer of activated B cells (NF-κB) and mitogen-activated protein kinase (MAPK) pathways. While cytokine expression increased after 1 h of 40 Hz flicker stimulation, protein phosphorylation in the NF-κB pathway was upregulated within minutes. Importantly, the cytokine expression profile induced by 40 Hz flicker was different from cytokine changes in response to acute neuroinflammation induced by lipopolysaccharides. These results are the first, to our knowledge, to show how visual stimulation rapidly induces critical neuroimmune signaling in healthy animals.
by
Suhasa B. Kodandaramaiah;
Gregory L. Holst;
Ian R. Wickersham;
Annabelle Singer;
Giovanni Talei Franzesi;
Michael L. McKinnon;
Craig R. Forest;
Edward S. Boyden
Whole-cell patch clamping in vivo is an important neuroscience technique that uniquely provides access to both suprathreshold spiking and subthreshold synaptic events of single neurons in the brain. This article describes how to set up and use the autopatcher, which is a robot for automatically obtaining high-yield and high-quality whole-cell patch clamp recordings in vivo. By following this protocol, a functional experimental rig for automated whole-cell patch clamping can be set up in 1 week. High-quality surgical preparation of mice takes ∼1 h, and each autopatching experiment can be carried out over periods lasting several hours. Autopatching should enable in vivo intracellular investigations to be accessible by a substantial number of neuroscience laboratories, and it enables labs that are already doing in vivo patch clamping to scale up their efforts by reducing training time for new lab members and increasing experimental durations by handling mentally intensive tasks automatically.
by
Adolfo Ramirez-Zamora;
James Giordano;
Edward S. Boyden;
Viviana Gradinaru;
Aysegul Gunduz;
Philip A. Starr;
Sameer A. Sheth;
Cameron C. McIntyre;
Michael D. Fox;
Jerrold Vitek;
Vinata Vedam-Mai;
Umer Akbar;
Leonardo Almeida;
Helen M. Bronte-Stewart;
Helen S Mayberg;
Nader Pouratian;
Aryn H. Gittis;
Annabelle Singer;
Meaghan C. Creed
The annual deep brain stimulation (DBS) Think Tank aims to create an opportunity for a multidisciplinary discussion in the field of neuromodulation to examine developments, opportunities and challenges in the field. The proceedings of the Sixth Annual Think Tank recapitulate progress in applications of neurotechnology, neurophysiology, and emerging techniques for the treatment of a range of psychiatric and neurological conditions including Parkinson’s disease, essential tremor, Tourette syndrome, epilepsy, cognitive disorders, and addiction. Each section of this overview provides insight about the understanding of neuromodulation for specific disease and discusses current challenges and future directions. This year’s report addresses key issues in implementing advanced neurophysiological techniques, evolving use of novel modulation techniques to deliver DBS, ans improved neuroimaging techniques. The proceedings also offer insights into the new era of brain network neuromodulation and connectomic DBS to define and target dysfunctional brain networks. The proceedings also focused on innovations in applications and understanding of adaptive DBS (closed-loop systems), the use and applications of optogenetics in the field of neurostimulation and the need to develop databases for DBS indications. Finally, updates on neuroethical, legal, social, and policy issues relevant to DBS research are discussed.
Oscillatory brain activity reflects different internal brain states including neurons’ excitatory state and synchrony among neurons. However, characterizing these states is complicated by the fact that different oscillations are often coupled, such as gamma oscillations nested in theta in the hippocampus, and changes in coupling are thought to reflect distinct states. Here, we describe a new method to separate single oscillatory cycles into distinct states based on frequency and phase coupling. Using this method, we identified four theta-gamma coupling states in rat hippocampal CA1. These states differed in abundance across behaviors, phase synchrony with other hippocampal subregions, and neural coding properties suggesting that these states are functionally distinct. We captured cycle-to-cycle changes in oscillatory coupling states and found frequent switching between theta-gamma states showing that the hippocampus rapidly shifts between different functional states. This method provides a new approach to investigate oscillatory brain dynamics broadly.
Repeated sequences of neural activity are a pervasive feature of neural networks in vivo and in vitro. In the hippocampus, sequential firing of many neurons over periods of 100-300 ms reoccurs during behavior and during periods of quiescence. However, it is not known whether the hippocampus produces longer sequences of activity or whether such sequences are restricted to specific network states. Furthermore, whether long repeated patterns of activity are transmitted to single cells downstream is unclear. To answer these questions, we recorded intracellularly from hippocampal CA1 of awake, behaving male mice to examine both subthreshold activity and spiking output in single neurons. In eight of nine recordings, we discovered long (900 ms) reoccurring subthreshold fluctuations or “repeats.” Repeats generally were high-amplitude, nonoscillatory events reoccurring with 10msprecision. Using statistical controls, we determined that repeats occurred more often than would be expected from unstructured network activity (e.g., by chance). Most spikes occurred during a repeat, and when a repeat contained a spike, the spike reoccurred with precision on the order of ≤ 20 ms, showing that long repeated patterns of subthreshold activity are strongly connected to spike output. Unexpectedly, we found that repeats occurred independently of classic hippocampal network states like theta oscillations or sharp-wave ripples. Together, these results reveal surprisingly long patterns of repeated activity in the hippocampal network that occur nonstochastically, are transmitted to single downstream neurons, and strongly shape their output. This suggests that the timescale of information transmission in the hippocampal network is much longer than previously thought.
by
Anthony J. Martorell;
Abigail L. Paulson;
Ho-Jun Suk;
Fatema Abdurrob;
Gabi T. Drummond;
Webster Guan;
Jennie Z. Young;
David Nam-Woo Kim;
Oleg Kritskiy;
Scarlett Barker;
Vamsi Mangena;
Stephanie M. Prince;
Emery N. Brown;
Kwanghun Chung;
Edward S. Boyden;
Annabelle Singer;
Li-Huei Tsai
We previously reported that inducing gamma oscillations with a non-invasive light flicker (gamma entrainment using sensory stimulus or GENUS) impacted pathology in the visual cortex of Alzheimer's disease mouse models. Here, we designed auditory tone stimulation that drove gamma frequency neural activity in auditory cortex (AC) and hippocampal CA1. Seven days of auditory GENUS improved spatial and recognition memory and reduced amyloid in AC and hippocampus of 5XFAD mice. Changes in activation responses were evident in microglia, astrocytes, and vasculature. Auditory GENUS also reduced phosphorylated tau in the P301S tauopathy model.
Furthermore, combined auditory and visual GENUS, but not either alone, produced microglial-clustering responses, and decreased amyloid in medial prefrontal cortex. Whole brain analysis using SHIELD revealed widespread reduction of amyloid plaques throughout neocortex after multi-sensory GENUS. Thus, GENUS can be achieved through multiple sensory modalities with wide-ranging effects across multiple brain areas to improve cognitive function. Auditory stimulation combined with light-induced gamma oscillations in the hippocampus CA1 and auditory cortex regions of the brain reduces amyloid levels and improves memory in animal models of Alzheimer's disease.