The impact of ambient gas molecules (X), NO 2 , CO 2 and SO 2 on the structure, stability and decontamination activity of Cs 8 Nb 6 O 19 polyoxometalate was studied computationally and experimentally. It was found that Cs 8 Nb 6 O 19 absorbs these molecules more strongly than it adsorbs water and Sarin (GB) and that these interactions hinder nerve agent decontamination. The impacts of diamagnetic CO 2 and SO 2 molecules on polyoxoniobate Cs 8 Nb 6 O 19 were fundamentally different from that of NO 2 radical. At ambient temperatures, weak coordination of the first NO 2 radical to Cs 8 Nb 6 O 19 conferred partial radical character on the polyoxoniobate and promoted stronger coordination of the second NO 2 adsorbent to form a stable diamagnetic Cs 8 Nb 6 O 19 /(NO 2 ) 2 species. Moreover, at low temperatures, NO 2 radicals formed stable dinitrogen tetraoxide (N 2 O 4 ) that weakly interacted with Cs 8 Nb 6 O 19 . It was found that both in the absence and presence of ambient gas molecules, GB decontamination by the Cs 8 Nb 6 O 19 species proceeds via general base hydrolysis involving: (a) the adsorption of water and the nerve agent on Cs 8 Nb 6 O 19 /(X), (b) concerted hydrolysis of a water molecule on a basic oxygen atom of the polyoxoniobate and nucleophilic addition of the nascent OH group to the phosphorus center of Sarin, and (c) rapid reorganization of the formed pentacoordinated-phosphorus intermediate, followed by dissociation of either HF or isopropanol and formation of POM-bound isopropyl methyl phosphonic acid (i-MPA) or methyl phosphonofluoridic acid (MPFA), respectively. The presence of the ambient gas molecules increases the energy of the intermediate stationary points relative to the asymptote of the reactants and slightly increases the hydrolysis barrier. These changes closely correlate with the Cs 8 Nb 6 O 19 -X complexation energy. The most energetically stable intermediates of the GB hydrolysis and decontamination reaction were found to be Cs 8 Nb 6 O 19 /X-MPFA-(i-POH) and Cs 8 Nb 6 O 19 /X-(i-MPA)-HF both in the absence and presence of ambient gas molecules. The high stability of these intermediates is due to, in part, the strong hydrogen bonding between the adsorbates and the protonated [Cs 8 Nb 6 O 19 /X/H] + -core. Desorption of HF or/and (i-POH) and regeneration of the catalyst required deprotonation of the [Cs 8 Nb 6 O 19 /X/H] + -core and protonation of the phosphonic acids i-MPA and MPFA. This catalyst regeneration is shown to be a highly endothermic process, which is the rate-limiting step of the GB hydrolysis and decontamination reaction both in the absence and presence of ambient gas molecules.
Using calculations, we show that a proposed Cu(I)-mediated deconstructive fluorination of N-benzoylated cyclic amines with Selectfluor® is feasible and may proceed through: (a) substrate coordination to a Cu(I) salt, (b) iminium ion formation followed by conversion to a hemiaminal, and (c) fluorination involving C–C cleavage of the hemiaminal. The iminium ion formation is calculated to proceed via a F-atom coupled electron transfer (FCET) mechanism to form, formally, a product arising from oxidative addition coupled with electron transfer (OA + ET). The subsequent β-C–C cleavage/fluorination of the hemiaminal intermediate may proceed via either ring-opening or deformylative fluorination pathways. The latter pathway is initiated by opening of the hemiaminal to give an aldehyde, followed by formyl H-atom abstraction by a TEDA2+ radical dication, decarbonylation, and fluorination of the C3-radical center by another equivalent of Selectfluor®. In general, the mechanism for the proposed Cu(I)- mediated deconstructive C–H fluorination of N-benzoylated cyclic amines (LH) by Selectfluor® was calculated to proceed analogously to our previously reported Ag(I)-mediated reaction. In comparison to the Ag(I)-mediated process, in the Cu(I)-mediated reaction the iminium ion formation and hemiaminal fluorination have lower associated energy barriers, whereas the product release and catalyst re-generation steps have higher barriers.
Indium phosphide quantum dots (InP QDs) are nontoxic nanomaterials with potential applications in photocatalytic and optoelectronic fields. Post-synthetic treatments of InP QDs are known to be essential for improving their photoluminescence quantum efficiencies (PLQEs) and device performances, but the mechanisms remain poorly understood. Herein, by applying ultrafast transient absorption and photoluminescence spectroscopies, we systematically investigate the dynamics of photogenerated carriers in InP QDs and how they are affected by two common passivation methods: HF treatment and the growth of a heterostructure shell (ZnS in this study). The HF treatment is found to improve the PLQE up to 16-20% by removing an intrinsic fast hole trapping channel (τh,non= 3.4 ± 1 ns) in the untreated InP QDs while having little effect on the band-edge electron decay dynamics (τe= 26-32 ns). The growth of the ZnS shell, on the other hand, is shown to improve the PLQE up to 35-40% by passivating both electron and hole traps in InP QDs, resulting in both a long-lived band-edge electron (τe> 120 ns) and slower hole trapping lifetime (τh,non> 45 ns). Furthermore, both the untreated and the HF-treated InP QDs have short biexciton lifetimes (τxx∼ 1.2 ± 0.2 ps). The growth of an ultra-thin ZnS shell (∼0.2 nm), on the other hand, can significantly extend the biexciton lifetime of InP QDs to 20 ± 2 ps, making it a passivation scheme that can improve both the single and multiple exciton lifetimes. Based on these results, we discuss the possible trap-assisted Auger processes in InP QDs, highlighting the particular importance of trap passivation for reducing the Auger recombination loss in InP QDs.
Quantum confined semiconductor nanocrystals have emerged as a new class of materials for light harvesting and charge separation applications due to the ability to control their properties through rational design of their size, shape and composition. We report here a study of enhancing the quantum yield of methyl viologen (MV2+) photoreduction using colloidal quasi-type II CdSe/CdS core/shell quantum dots (QDs). The steady-state quantum yield of MV+radical generation, in the presence of thiols as sacrificial donors, increased monotonically with the CdS shell thickness within the studied thickness regime (0-4.7 CdS monolayers). Using ultrafast transient absorption and time-resolved photoluminescence decay spectroscopy, we found that both the rates of electron transfer from the QD to MV2+and the subsequent charge recombination in QD+-MV+complexes decreased exponentially with the shell thickness, consistent with calculated 1S electron and hole densities at the QD surfaces, respectively. Interestingly, the hole transfer rate remained relatively independent of shell thickness, likely due to a cancellation of the reduction of hole transfer coupling strength with the increased number of hole acceptor ligands on the QD surface at larger shell thickness. As a result, with increasing CdS shell thickness, the charge recombination loss decreases, enhancing the photoreduction quantum efficiency. This novel approach for improving photoreduction quantum efficiency should be applicable to many type II and quasi-type II core/shell quantum dots.