The acquisition of invasive properties is a prerequisite for tumor progression and metastasis. Molecular subtypes of KRAS-driven lung cancer exhibit distinct modes of invasion that likely contribute to unique growth properties and therapeutic susceptibilities. Despite this, pre-clinical discovery strategies designed to exploit invasive phenotypes are lacking. To address this, we designed an experimental system to screen for targetable signaling pathways linked to active early invasion phenotypes in the two most prominent molecular subtypes, TP53 and LKB1, of KRAS-driven lung adenocarcinoma (LUAD). By combining live-cell imaging of human bronchial epithelial cells in a 3D invasion matrix with RNA transcriptome profiling, we identified the LKB1-specific upregulation of bone morphogenetic protein 6 (BMP6). Examination of early-stage lung cancer patients confirmed upregulation of BMP6 in LKB1-mutant lung tumors. At the molecular level, we find that the canonical iron regulatory hormone Hepcidin is induced via BMP6 signaling upon LKB1 loss, where intact LKB1 kinase activity is necessary to maintain signaling homeostasis. Furthermore, pre-clinical studies in a novel Kras/Lkb1-mutant syngeneic mouse model show that potent growth suppression was achieved by inhibiting the ALK2/BMP6 signaling axis with single agents that are currently in clinical trials. We show that alterations in the iron homeostasis pathway are accompanied by simultaneous upregulation of ferroptosis protection proteins. Thus, LKB1 is sufficient to regulate both the 'gas' and 'breaks' to finely tune iron-regulated tumor progression.
Numerous techniques have been employed to deconstruct the heterogeneity observed in normal and diseased cellular populations, including single cell RNA sequencing, in situ hybridization, and flow cytometry. While these approaches have revolutionized our understanding of heterogeneity, in isolation they cannot correlate phenotypic information within a physiologically relevant live-cell state, with molecular profiles. This inability to integrate a historical live-cell phenotype, such as invasiveness, cell:cell interactions, and changes in spatial positioning, with multi-omic data, creates a gap in understanding cellular heterogeneity. We sought to address this gap by employing lab technologies to design a detailed protocol, termed Spatiotemporal Genomics and Cellular Analysis (SaGA), for the precise imaging-based selection, isolation, and expansion of phenotypically distinct live-cells. We begin with cells stably expressing a photoconvertible fluorescent protein and employ live cell confocal microscopy to photoconvert a user-defined single cell or set of cells displaying a phenotype of interest. The total population is then extracted from its microenvironment, and the optically highlighted cells are isolated using fluorescence activated cell sorting. SaGA-isolated cells can then be subjected to multi-omics analysis or cellular propagation for in vitro or in vivo studies. This protocol can be applied to a variety of conditions, creating protocol flexibility for user-specific research interests. The SaGA technique can be accomplished in one workday by non-specialists and results in a phenotypically defined cellular subpopulation for integration with multi-omics techniques. We envision this approach providing multi-dimensional datasets exploring the relationship between live-cell phenotype and multi-omic heterogeneity within normal and diseased cellular populations.
Background: LKB1 is a serine/threonine kinase important for cell polarity and motility.
Results: LKB1 loss causes focal adhesion kinase hyperactivation and aberrant cell motility.
Conclusion: LKB1 represses focal adhesion kinase to regulate its turnover.
Significance: This provides information on how LKB1 regulates the cell adhesion pathway during cell motility.
Oncogenic RAS mutations drive aggressive cancers that are difficult to treat in the clinic, and while direct inhibition of the most common KRAS variant in lung adenocarcinoma (G12C) is undergoing clinical evaluation, a wide spectrum of oncogenic RAS variants together make up a large percentage of untargetable lung and GI cancers. Here we report that loss-of-function alterations (mutations and deep deletions) in the gene that encodes HD-PTP ( PTPN23 ) occur in up to 14% of lung cancers in the ORIEN Avatar lung cancer cohort, associate with adenosquamous histology, and occur alongside an altered spectrum of KRAS alleles. Furthermore, we show that in publicly available early-stage NSCLC studies loss of HD-PTP is mutually exclusive with loss of LKB1, which suggests they restrict a common oncogenic pathway in early lung tumorigenesis. In support of this, knockdown of HD-PTP in RAS-transformed lung cancer cells is sufficient to promote FAK-dependent invasion. Lastly, knockdown of the Drosophila homolog of HD-PTP (dHD-PTP/Myopic) synergizes to promote RAS-dependent neoplastic progression. Our findings highlight a novel tumor suppressor that can restrict RAS-driven lung cancer oncogenesis and identify a targetable pathway for personalized therapeutic approaches for adenosquamous lung cancer.
Liver kinase B1 (LKB1)–inactivated tumors are vulnerable to the disruption of pyrimidine metabolism, and leflunomide emerges as a therapeutic candidate because its active metabolite, A77–1726, inhibits dihydroorotate dehydrogenase, which is essential for de novo pyrimidine biosynthesis. However, it is unclear whether leflunomide inhibits LKB1-inactivated tumors in vivo, and whether its inhibitory effect on the immune system will promote tumor growth. Here, we carried out a comprehensive analysis of leflunomide treatment in various LKB1-inactivated murine xenografts, patient-derived xenografts, and genetically engineered mouse models. We also generated a mouse tumor–derived cancer cell line, WRJ388, that could metastasize to the lung within a month after subcutaneous implantation in all animals. This model was used to assess the ability of leflunomide to control distant metastasis. Leflunomide treatment shrank a HeLa xenograft and attenuated the growth of an H460 xenograft, a patient-derived xenograft, and lung adenocarcinoma in the immune-competent genetically engineered mouse models. Interestingly, leflunomide suppressed tumor growth through at least three different mechanisms. It caused apoptosis in HeLa cells, induced G1 cell-cycle arrest in H460 cells, and promoted S-phase cell-cycle arrest in WRJ388 cells. Finally, leflunomide treatment prevented lung metastasis in 78% of the animals in our novel lung cancer metastasis model. In combination, these results demonstrated that leflunomide utilizes different pathways to suppress the growth of LKB1-inactivated tumors, and it also prevents cancer metastasis at distant sites. Therefore, leflunomide should be evaluated as a therapeutic agent for tumors with LKB1 inactivation.
Background: Intratumoral heterogeneity is defined by subpopulations with varying genotypes and phenotypes. Specialized, highly invasive leader cells and less invasive follower cells are phenotypically distinct subpopulations that cooperate during collective cancer invasion. Because leader cells are a rare subpopulation that would be missed by bulk sequencing, a novel image-guided genomics platform was used to precisely select this subpopulation. This study identified a novel leader cell mutation signature and tested its ability to predict prognosis in non–small cell lung cancer (NSCLC) patient cohorts. Methods: Spatiotemporal genomic and cellular analysis was used to isolate and perform RNA sequencing on leader and follower populations from the H1299 NSCLC cell line, and it revealed a leader-specific mutation cluster on chromosome 16q. Genomic data from patients with lung squamous cell carcinoma (LUSC; n = 475) and lung adenocarcinoma (LUAD; n = 501) from The Cancer Genome Atlas were stratified by 16q mutation cluster (16qMC) status (16qMC+ vs 16qMC−) and compared for overall survival (OS), progression-free survival (PFS), and gene set enrichment analysis (GSEA). Results: Poorer OS, poorer PFS, or both were found across all stages and among early-stage patients with 16qMC+ tumors within the LUSC and LUAD cohorts. GSEA revealed 16qMC+ tumors to be enriched for the expression of metastasis- and survival-associated gene sets. Conclusions: This represents the first leader cell mutation signature identified in patients and has the potential to better stratify high-risk NSCLC and ultimately improve patient outcomes.
Nuclear factor kappa B (NF-κB) is a key signaling molecule in the elaboration of the inflammatory response. Data indicate that curcumin, a natural ingredient of the curry spice turmeric, acts as a NF-κB inhibitor and exhibits both anti-inflammatory and anti-cancer properties. Curcumin analogues with enhanced activity on the NF-κB and other inflammatory signaling pathways have been developed including the synthetic monoketone compound termed 3,5-Bis(2-fluorobenzylidene)-4-piperidone (EF24). 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31) is a structurally-related curcumin analogue whose potency for NF-κB inhibition has yet to be determined. To examine the activity of EF31 compared to EF24 and curcumin, mouse RAW264.7 macrophages were treated with EF31, EF24, curcumin (1–100µM) or vehicle (DMSO 1%) for 1 hour. NF-κB pathway activity was assessed following treatment with lipopolysaccharide (LPS) (1µg/mL). EF31 (IC50 ~5µM) exhibited significantly more potent inhibition of LPS-induced NF-κB DNA binding compared to both EF24 (IC50~35µM) and curcumin (IC50 >50µM). In addition, EF31 exhibited significantly greater inhibition of NF-κB nuclear translocation as well as the induction of downstream inflammatory mediators including pro-inflammatory cytokine mRNA and protein (tumor necrosis factor-α, interleukin-1β, and interleukin-6). Regarding the mechanism of these effects on NF-κB activity, EF31 (IC50~1.92µM) exhibited significantly greater inhibition of IκB kinase β compared to EF24 (IC50~131µM). Finally, EF31 demonstrated potent toxicity in NF-κB-dependent cancer cell lines while having minimal and reversible toxicity in RAW264.7 macrophages. These data indicate that EF31 is a more potent inhibitor of NF-κB activity than either EF24 or curcumin while exhibiting both anti-inflammatory and anticancer activities. Thus, EF31 represents a promising curcumin analogue for further therapeutic development.
Background: STRADα is the cofactor of the tumor suppressor LKB1; however, it is unclear if STRADα has LKB1-independent roles.
Results: STRADα complexes with the kinase PAK1 to modify PAK1 phosphorylation likely via rac1 and control cell motility when LKB1 is null.
Conclusion: STRADα regulates PAK1 in LKB1-null cells to oversee cancer cell polarity and invasion.
Significance: This shows an undiscovered role of STRADα distinct from the LKB1 pathway.
Mammalian target of rapamycin (mTOR) is aberrantly activated in many cancer types, and two rapamycin derivatives are currently approved by the Food and Drug Administration (FDA) of the United States for treating renal cell carcinoma. Mechanistically, mTOR is hyperactivated in human cancers either due to the genetic activation of its upstream activating signaling pathways or the genetic inactivation of its negative regulators. The tumor suppressor liver kinase B1 (LKB1), also known as serine/threonine kinase 11 (STK11), is involved in cell polarity, cell detachment and adhesion, tumor metastasis, and energetic stress response. A key role of LKB1 is to negatively regulate the activity of mTOR complex 1 (mTORC1). This review summarizes the molecular basis of this negative interaction and recent research progress in this area.
The authors regret that there was an error in the labelling of plasmid K78I. All the cell lines containing mutant LKB1 should be labelled K78I, not K78M, throughout this article. The authors would like to apologise for any inconvenience caused.