by
Sascha A.L. Mueller;
Jonathan A. Oler;
Patrick H. Roseboom;
Nakul Aggarwal;
Margaux M. Kenwood;
Marissa K. Riedel;
Victoria R. Elam;
Miles E. Olsen;
Alexandra H. DiFilippo;
Bradley T. Christian;
xing hu;
Adriana Galvan;
Matthew A. Boehm;
Michael Michaelides;
Ned H. Kalin
Anxiety disorders are among the most prevalent psychiatric disorders, with symptoms often beginning early in life. To model the pathophysiology of human pathological anxiety, we utilized Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in a nonhuman primate model of anxious temperament to selectively increase neuronal activity of the amygdala. Subjects included 10 young rhesus macaques; 5 received bilateral infusions of AAV5-hSyn-HA-hM3Dq into the dorsal amygdala, and 5 served as controls. Subjects underwent behavioral testing in the human intruder paradigm following clozapine or vehicle administration, prior to and following surgery. Behavioral results indicated that clozapine treatment post-surgery increased freezing across different threat-related contexts in hM3Dq subjects. This effect was again observed approximately 1.9 years following surgery, indicating the long-term functional capacity of DREADD-induced neuronal activation. [11C]deschloroclozapine PET imaging demonstrated amygdala hM3Dq-HA specific binding, and immunohistochemistry revealed that hM3Dq-HA expression was most prominent in basolateral nuclei. Electron microscopy confirmed expression was predominantly on neuronal membranes. Together, these data demonstrate that activation of primate amygdala neurons is sufficient to induce increased anxiety-related behaviors, which could serve as a model to investigate pathological anxiety in humans.
The striatum receives abundant glutamatergic afferents from the cortex and thalamus. These inputs play a major role in the functions of the striatal neurons in normal conditions, and are significantly altered in pathological states, such as Parkinson’s disease. This review summarizes the current knowledge of the connectivity of the corticostriatal and thalamostriatal pathways, with emphasis on the most recent advances in the field. We also discuss novel findings regarding structural changes in cortico- and thalamostriatal connections that occur in these connections as a consequence of striatal loss of dopamine in parkinsonism.
Dopaminergic medications ameliorate many of the motor impairments of Parkinson's disease (PD). However, parkinsonism is often only partially reversed by these drugs, and they can have significant side effects. Therefore, a need remains for novel treatments of parkinsonism. Studies in rodents and preliminary clinical evidence have shown that T-type calcium channel (TTCC) antagonists have antiparkinsonian effects. However, most of the available studies utilized nonselective agents. We now evaluated whether systemic injections of the specific TTCC blocker ML218 have antiparkinsonian effects in MPTP-treated parkinsonian Rhesus monkeys. The animals were treated chronically with MPTP until they reached stable parkinsonism. In pharmacokinetic studies, we found that ML218 reaches a peak CSF concentration 1-2 h after s.c. administration. In electrocardiographic studies, we found no effects of ML218 on cardiac rhythmicity. As expected, systemic injections of the dopamine precursor L-DOPA dose-dependently increased the movements in our parkinsonian animals. We then tested the behavioral effects of systemic injections of ML218 (1, 10, or 30 mg/kg) or its vehicle, but did not detect specific antiparkinsonian effects. ML218 (3 or 10 mg/kg) was also not synergistic with L-DOPA. Using recordings of electrocorticogram signals (in one animal), we found that ML218 increased sleep. We conclude that ML218 does not have antiparkinsonian effects in MPTP-treated parkinsonian monkeys, due at least in part, to the agent's sedative effects.
by
Adriana Galvan;
Jessica Raper;
Xing Hu;
Jean-Francois Pare;
Jordi Bonaventura;
Christopher T. Richie;
Michael Michaelides;
Sascha A. L. Mueller;
Patrick H. Roseboom;
Jonathan A. Oler;
Ned H. Kalin;
Randy Hall;
Yoland Smith
Designer receptors exclusively activated by designer drugs (DREADDs) are extensively used to modulate neuronal activity in rodents, but their use in primates remains limited. An essential need that remains is the demonstration that DREADDs are efficiently expressed on the plasma membrane of primate neurons. To address this issue, electron microscopy immunogold was used to determine the subcellular localization of the AAV vector-induced DREADDs hM4Di and hM3Dq fused to different tags in various brain areas of rhesus monkeys and mice. When hM4Di was fused to mCherry, the immunogold labelling was mostly confined to the intracellular space, and poorly expressed at the plasma membrane in monkey dendrites. In contrast, the hM4Di-mCherry labelling was mostly localized to the dendritic plasma membrane in mouse neurons, suggesting species differences in the plasma membrane expression of these exogenous proteins.
The lack of hM4Di plasma membrane expression may limit the functional effects of systemic administration of DREADD-actuators in monkey neurons. Removing the mCherry and fusing of hM4Di with the haemagglutinin (HA) tag resulted in strong neuronal plasma membrane immunogold labelling in both monkeys and mice neurons. Finally, hM3Dq-mCherry was expressed mostly at the plasma membrane in monkey neurons, indicating that the fusion of mCherry with hM3Dq does not hamper membrane incorporation of this specific DREADD. Our results suggest that the pattern of ultrastructural expression of DREADDs in monkey neurons depends on the DREADD/tag combination. Therefore, a preliminary characterization of plasma membrane expression of specific DREADD/tag combinations is recommended when using chemogenetic approaches in primates.
Over the last 10 years, the use of opto- and chemogenetics to modulate neuronal activity in research applications has increased exponentially. Both techniques involve the genetic delivery of artificial proteins (opsins or engineered receptors) that are expressed on a selective population of neurons. The firing of these neurons can then be manipulated using light sources (for opsins) or by systemic administration of exogenous compounds (for chemogenetic receptors). Opto- and chemogenetic tools have enabled many important advances in basal ganglia research in rodent models, yet these techniques have faced a slow progress in non-human primate (NHP) research. In this review, we present a summary of the current state of these techniques in NHP research and outline some of the main challenges associated with the use of these genetic-based approaches in monkeys. We also explore cutting-edge developments that will facilitate the use of opto- and chemogenetics in NHPs, and help advance our understanding of basal ganglia circuits in normal and pathological conditions.
Manipulation of neuronal activity during the early postnatal period in monkeys has been largely limited to permanent lesion studies, which can be impacted by developmental plasticity leading to reorganization and compensation from other brain structures that can interfere with the interpretations of results. Chemogenetic tools, such as DREADDs (designer receptors exclusively activated by designer drugs), can transiently and reversibly activate or inactivate brain structures, avoiding the pitfalls of permanent lesions to better address important developmental neuroscience questions. We demonstrate that inhibitory DREADDs in the amygdala can be used to manipulate socioemotional behavior in infant monkeys. Two infant rhesus monkeys (1 male, 1 female) received AAV5-hSyn-HA-hM4Di-IRES-mCitrine injections bilaterally in the amygdala at 9 months of age. DREADD activation after systemic administration of either clozapine-N-oxide or low-dose clozapine resulted in decreased freezing and anxiety on the human intruder paradigm and changed the looking patterns on a socioemotional attention eye-tracking task, compared with vehicle administration. The DREADD-induced behaviors were reminiscent of, but not identical to, those seen after permanent amygdala lesions in infant monkeys, such that neonatal lesions produce a more extensive array of behavioral changes in response to the human intruder task that were not seen with DREADD-evoked inhibition of this region. Our results may help support the notion that the more extensive behavior changes seen after early lesions are manifested from brain reorganization that occur after permanent damage. The current study provides a proof of principle that DREADDs can be used in young infant monkeys to transiently and reversibly manipulate behavior.
GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most dat a obt ained so far relate to their role in the regulation of GABA A receptor-mediated postsynaptic tonic and phasic inhibition in the hippocampus, cerebral cortex and cerebellum. Taking into consideration the key role of GABAergic transmission within basal ganglia networks, and the importance for these systems to be properly balanced to mediate normal basal ganglia function, we analyzed in detail the localization and function of GAT-1 and GAT-3 in the globus pallidus of normal and Parkinsonian animals, in order to further understand the substrate and pos sible mechanisms by which GABA transporters may regulate basal ganglia outfow, and may become relevant targets for new therapeutic approaches for the treatment of basal ganglia-related disorders. In this review, we describe the general features of GATs in the basal ganglia, and give a detailed account of recent evidence that GAT-1 and GAT-3 regulation can have a major impact on the fring rate and pattern of basal ganglia neurons through pre- and post-synaptic GABA A - and GABA B -receptor-mediated effects.
GABA and glutamate, the main transmitters in the basal ganglia, exert their effects through ionotropic and metabotropic receptors. The dynamic activation of these receptors in response to released neurotransmitter depends, among other factors, on their precise localization in relation to corresponding synapses. The use of high resolution quantitative electron microscope immunocytochemical techniques has provided in-depth description of the subcellular and subsynaptic localization of these receptors in the CNS. In this article, we review recent findings on the ultrastructural localization of GABA and glutamate receptors and transporters in the basal ganglia, at synaptic, extrasynaptic and presynaptic sites. The anatomical evidence supports numerous potential locations for receptor-neurotransmitter interactions, and raises important questions regarding mechanisms of activation and function of synaptic versus extrasynaptic receptors in the basal ganglia.
Group III metabotropic glutamate receptors (mGluR4,7,8) are widely distributed in the basal ganglia. Injection of group III mGluR agonists into the striatopallidal complex alleviates parkinsonian symptoms in 6-hydroxydopamine-treated rats. In vitro rodent studies have suggested that this may be partly due to modulation of synaptic transmission at striatopallidal and corticostriatal synapses through mGluR4 activation. However, the in vivo electrophysiological effects of group III mGluRs activation upon basal ganglia neurons activity in nonhuman primates remain unknown. Thus, in order to examine the anatomical substrates and physiological effects of group III mGluRs activation upon striatal and pallidal neurons in monkeys, we used electron microscopy immunohistochemistry to localize mGluR4, combined with local administration of the group III mGluR agonist L-AP4, or the mGluR4 positive allosteric modulator VU0155041, to assess the effects of group III mGluR activation on the firing rate and pattern of striatal and pallidal neurons in 1-methyl 4-phenyl 1,2,3,6-tetrahydropyridine (MPTP)-treated parkinsonian monkeys.
At the ultrastructural level, striatal mGluR4 immunoreactivity was localized in pre- (60%) and post-synaptic (30%) elements, while in the GPe, mGluR4 was mainly expressed presynaptically (90%). In the putamen, terminals expressing mGluR4 were evenly split between putative excitatory and inhibitory terminals, while in the GPe, most labeled terminals displayed the ultrastructural features of striatal-like inhibitory terminals, though putative excitatory boutons were also labeled. No significant difference was found between normal and parkinsonian monkeys. Extracellular recordings in awake MPTP-treated monkeys revealed that local microinjections of small volumes of L-AP4 resulted in increased firing rates in one half of striatal cells and one third of pallidal cells, while a significant number of neurons in both structures showed either opposite effects, or did not display any significant rate changes following L-AP4 application. VU0155041 administration had little effect on firing rates. Both compounds also had subtle effects on bursting and oscillatory properties, acting to increase the irregularity of firing. The occurrence of pauses in firing was reduced in the majority (80%) of GPe neurons after L-AP4 injection. Our findings indicate that glutamate can mediate multifarious physiological effects upon striatal and pallidal neurons through activation of pre-synaptic group III mGluRs at inhibitory and excitatory synapses in parkinsonian monkeys.
Changes in GABAergic transmission in the external and internal segments of the globus pallidus (GPe and GPi) contribute to the pathophysiology of the basal ganglia network in Parkinson’s disease. Because GABA-B receptors are involved in the modulation of GABAergic transmission in GPe and GPi, it is possible that changes in the functions or localization of these receptors contribute to the changes in GABAergic transmission. To further examine this question, we investigated the anatomical localization of GABA-B receptors and the electrophysiologic effects of microinjections of GABA-B receptor ligands in GPe and GPi of MPTP-treated (parkinsonian) monkeys. We found that the pattern of cellular and ultrastructural localization of the GABA-BR1 subunit of the GABA-B receptor in GPe and GPi was not significantly altered in parkinsonian monkeys. However, the magnitude of reduction in firing rate of GPe and GPi neurons produced by microinjections of the GABA-B receptor agonist baclofen was larger in MPTP-treated animals than in normal monkeys. Injections of the GABA-B receptor antagonist CGP55845A were more effective in reducing the firing rate of GPi neurons in parkinsonian monkeys than in normal animals. In addition, the injections of baclofen in GPe and GPi, or of CGP55845A in GPi lead to a significant increase in the proportion of spikes in rebound bursts in parkinsonian animals, but not in normal monkeys. Thus, despite the lack of changes in the localization of GABA-BR1 subunits in the pallidum, GABA-B receptor-mediated effects are altered in the GPe and GPi of parkinsonian monkeys. These changes in GABA-B receptors function may contribute to bursting activities in the parkinsonian state.