For many bacterial infections, noninherited mechanisms of resistance are responsible for extending the term of treatment and in some cases precluding its success. Among the most important of these noninherited mechanisms of resistance is the ability of bacteria to form biofilms. There is compelling evidence that bacteria within biofilms are more refractory to antibiotics than are planktonic cells. Not so clear, however, is the extent to which this resistance can be attributed to the structure of biofilms rather than the physiology and density of bacteria within them. To explore the contribution of the structure of biofilms to resistance in a quantitative way, we developed an assay that compares the antibiotic sensitivity of bacteria in biofilms to cells mechanically released from these structures. Our method, which we apply to Escherichia coli and Staphylococcus aureus each with antibiotics of five classes, controls for the density and physiological state of the treated bacteria. For most of the antibiotics tested, the bacteria in biofilms were no more resistant than the corresponding populations of planktonic cells of similar density. Our results, however, suggest that killing by gentamicin, streptomycin, and colistin is profoundly inhibited by the structure of biofilms; these drugs are substantially more effective in killing bacteria released from biofilms than cells within these structures.
Volume 11, issue 6, e02634-20, 2020, https://doi.org/10.1128/mBio.02634-20. The third paragraph of the Acknowledgments section should read as follows: “Funding for this study was provided by National Institutes of Allergy and Infectious Diseases grant R01AI137679 and by Colciencias through a doctoral fellowship to A.P.-G. We also acknowledge funding from the USDA NIFA (grant 2005-5110-03271) for the original Norwalk virus human challenge study.” That is, a wrong NIH project number was previously provided (1K01AI103544) for the funding that partially supported this study. The correct project number is R01AI137679.
Background The Transmission Assessment Survey (TAS) is a decision-making tool to determine when transmission of lymphatic filariasis is presumed to have reached a level low enough that it cannot be sustained even in the absence of mass drug administration. The survey is applied over geographic areas, called evaluation units (EUs); existing World Health Organization guidelines limit EU size to a population of no more than 2 million people. Methodology/Principal findings In 2015, TASs were conducted in 14 small EUs in Haiti. Simulations, using the observed TAS results, were performed to understand the potential programmatic impact had Haiti chosen to form larger EUs. Nine “combination-EUs” were formed by grouping adjacent EUs, and bootstrapping was used to simulate the expected TAS results. When the combination-EUs were comprised of at least one “passing” and one “failing” EU, the majority of these combination-EU would pass the TAS 79% - 100% of the time. Even in the case when both component EUs had failed, the combination-EU was expected to “pass” 11% of the time. Simulations of mini-TAS, a strategy with smaller power and hence smaller sample size than TAS, resulted in more conservative “passing” and “failing” when implemented in original EUs. Conclusions/Significance Our results demonstrate the high potential for misclassification when the average prevalence of lymphatic filariasis in the combined areas differs with regards to the TAS threshold. Of particular concern is the risk of “passing” larger EUs that include focal areas where prevalence is high enough to be potentially self-sustaining. Our results reaffirm the approach that Haiti took in forming smaller EUs. Where baseline or monitoring data show a high or heterogeneous prevalence, programs should leverage alternative strategies like mini-TAS in smaller EUs, or consider gathering additional data through spot check sites to advise EU formation. Author summary Lymphatic filariasis is a disease caused by roundworms that may lead to disability, psychological problems, stigma, and lowered quality of life. One of the key strategies to control and eliminate lymphatic filariasis is mass drug administration (MDA), or repeated treatment of all at-risk people living in affected areas with an annual dose of medicine. To determine whether MDA can be stopped in a particular area, a transmission assessment survey (TAS) is conducted whereby a sample of children are tested for filarial antigen and proportion with a positive result is compared against a target threshold. Existing guidelines for delimiting the geographic areas to conduct TAS permit large evaluation units. In 2015, TASs were conducted in Haiti using more stringent criteria for forming evaluation units, resulting in much smaller geographic areas for evaluation. Using simulations, the authors found that, had Haiti followed the existing guidelines and assessed larger geographic areas, many of the areas might have been misclassified and MDA stopped prematurely in some settings. This research suggests that caution is needed when forming evaluation units for TAS, especially if the prevalence of lymphatic filariasis is not uniform.
Background: Open drains are common methods of transporting solid waste and excreta in low-income urban neighborhoods. Open drains can overflow due to blockages with solid waste and during rainfall, posing exposure risks. The goal of this study was to evaluate whether pediatric enteric infection was associated with open drains and flooding in a dense, low-income, urban neighborhood. Methods: As part of the MAL-ED study in Vellore, India, a cohort of 230 children provided stool specimens at 14-17 scheduled home visits and during diarrheal episodes in the first two years of life. All specimens were analyzed for enteric pathogens. Caregivers in 100 households reported on flooding of drains and households and monthly frequency of contact with open drains and flood water. Household GPS points were collected. Monthly rainfall totals for the Vellore district were collected from the Indian Meteorological Department. Clustering of reported drain and house flooding were identified by Kulldorff's Bernoulli Spatial Scan. Differences in enteric infection were assessed for household responses and spatial clusters, with interactions between reported flooding and rainfall to approximate monthly drain flooding retrospectively, using multivariable, mixed-effects logistic regression models. Results: Coverage of household toilets was low (33%), and most toilets (82%) discharged directly into open drains, suggesting poor neighborhood fecal sludge management. Odds of enteric infection increased significantly with total monthly rainfall for children who lived in households that reported that the nearby drain flooded (4% increase per cm of rain: OR: 1.04, 95% CI: 1.00-1.08) and for children in households in a downstream spatial cluster of reported drain flooding (5% increase per cm of rain: OR: 1.05, 95% CI: 1.01-1.09). There was no association between odds of enteric infection and frequency of reported contact with drain or floodwater. Conclusions: Children in areas susceptible to open drain flooding had increased odds of enteric infection as rainfall increased. Results suggested that infection increased with rainfall due to neighborhood infrastructure (including poor fecal sludge management) and not frequency of contact. Thus, these exposures may not be mitigated by changes in personal behaviors alone. These results underscore the importance of improving the neighborhood environment to improve children's health in low-income, urban settings.
Norovirus infections take a heavy toll on worldwide public health. While progress has been made toward understanding host responses to infection, the role of the gut microbiome in determining infection outcome is unknown. Moreover, data are lacking on the nature and duration of the microbiome response to norovi-rus infection, which has important implications for diagnostics and host recovery. Here, we characterized the gut microbiomes of subjects enrolled in a norovirus challenge study. We analyzed microbiome features of asymptomatic and symptomatic individuals at the genome (population) and gene levels and assessed their response over time in symptomatic individuals. We show that the preinfection microbiomes of subjects with asymptomatic infections were enriched in Bacteroidetes and depleted in Clostridia relative to the microbiomes of symptomatic subjects. These composi-tional differences were accompanied by differences in genes involved in the metabolism of glycans and sphingolipids that may aid in host resilience to infection. We further show that microbiomes shifted in composition following infection and that recovery times were variable among human hosts. In particular, Firmicutes increased immediately following the challenge, while Bacteroidetes and Proteobacteria de-creased over the same time. Genes enriched in the microbiomes of symptomatic subjects, including the adenylyltransferase glgC, were linked to glycan metabolism and cell-cell signaling, suggesting as-yet unknown roles for these processes in determining infection outcome. These results provide important context for understanding the gut microbiome role in host susceptibility to symptomatic norovirus infection and long-term health outcomes. IMPORTANCE The role of the human gut microbiome in determining whether an individual infected with norovirus will be symptomatic is poorly understood. This study provides important data on microbes that distinguish asymptomatic from symptomatic microbiomes and links these features to infection responses in a human challenge study. The results have implications for understanding resistance to and treatment of norovirus infections.
BACKGROUND
In the US, noroviruses are estimated to cause 21 million cases annually with economic losses reaching $2 billion. Outbreak investigations frequently implicate vomiting as a major transmission risk. However, little is known about the characteristics of vomiting as a symptom or the amount of virus present in emesis.
METHODOLOGY AND PRINCIPAL FINDINGS
Emesis samples and symptomology data were obtained from previous norovirus human challenge studies with GI.1 Norwalk virus, GII.2 Snow Mountain virus, and a pilot study with GII.1 Hawaii virus. Viral titers in emesis were determined using strain-specific quantitative RT-PCR. In all four studies, vomiting was common with 40-100% of infected subjects vomiting at least once. However, only 45% of subjects with vomiting also had diarrhea. Most of the emesis samples had detectable virus and the mean viral titers were 8.0 x 105 and 3.9 x 104 genomic equivalent copies (GEC)/ml for GI and GII viruses, respectively (p = 0.02). Sample pH was correlated with GII.2 Snow Mountain virus detection.
CONCLUSIONS AND SIGNIFICANCE
Half of all subjects with symptomatic infection experienced vomiting and the average subject shed 1.7 x 108 GEC in emesis. Unlike shedding through stool, vomiting is more likely to result in significant environmental contamination, leading to transmission through fomites and airborne droplets. This quantitative data will be critical for risk assessment studies to further understand norovirus transmission and develop effective control measures. The correlation between sample pH and virus detection is consistent with a single site of virus replication in the small intestine and stomach contents becoming contaminated by intestinal reflux. Additionally, the frequency of vomiting without concurrent diarrhea suggests that epidemiology studies that enroll subjects based on the presence of diarrhea may be significantly underestimating the true burden of norovirus disease.
Limiting the environmental transmission of soil-transmitted helminths (STHs), which infect 1.5 billion people worldwide, will require sensitive, reliable, and cost-effective methods to detect and quantify STHs in the environment. We review the state-of-the-art of STH quantification in soil, biosolids, water, produce, and vegetation with regard to four major methodological issues: environmental sampling; recovery of STHs from environmental matrices; quantification of recovered STHs; and viability assessment of STH ova. We conclude that methods for sampling and recovering STHs require substantial advances to provide reliable measurements for STH control. Recent innovations in the use of automated image identification and developments in molecular genetic assays offer considerable promise for improving quantification and viability assessment. The state-of-the-art and key developments in environmental methods for sampling, recovery and concentration, quantification, and viability assessment of soil-transmitted helminths (STHs) are reviewed. Optimal protocols for sampling and recovery of STHs from environmental samples have not been developed and systematic investigation is needed. Recent advances in genetic assays and automated image analysis for quantification and viability assessment offer improved sensitivity, reliability, and sample throughput.
Norovirus is the most common cause of epidemic and endemic acute gastroenteritis. However, national estimates of the infection burden are challenging. This study used a nationally representative serum bank to estimate the seroprevalence to five norovirus genotypes including three GII variants: GI.1 Norwalk, GI.4, GII.3, GII.4 US95/96, GII.4 Farmington Hills, GII.4 New Orleans, and GIV.1 in the USA population (aged 16 to 49 years). Changes in seroprevalence to the three norovirus GII.4 variants between 1999 and 2000, as well as 2003 and 2004, were measured to examine the role of population immunity in the emergence of pandemic GII.4 noroviruses.
The overall population-adjusted seroprevalence to any norovirus was 90.0% (1999 to 2000) and 95.9% (2003 to 2004). Seroprevalence was highest to GI.1 Norwalk, GII.3, and the three GII.4 noroviruses. Seroprevalence to GII.4 Farmington Hills increased significantly between the 1999 and 2000, as well as the 2003 and 2004, study cycles, consistent with the emergence of this pandemic strain. Seroprevalence to GII.4 New Orleans also increased over time, but to a lesser degree. Antibodies against the GIV.1 norovirus were consistently detected (population-adjusted seroprevalence 19.1% to 25.9%), with rates increasing with age. This study confirms the high burden of norovirus infection in US adults, with most adults having multiple norovirus infections over their lifetime.
Noroviruses are known to bind to histo-blood group antigens (HBGAs) and the specific binding patterns depend on the virus genotype. However, the development of point-of-care diagnostic assays based on this binding has been challenging due to low assay sensitivity. This study utilized a well-defined stool collection from a GII.2 Snow Mountain Virus (SMV) human challenge study to investigate virus recovery from stool and emesis samples using HBGA-coated beads. SMV was recovered from H type III-coated beads for 13 stool specimens out of 27 SMV-positive specimens tested. After adjusting for non-specific binding to PEG-coated beads, the mean percent recovery by H type III-coated beads was 308.11% +/− 861.61.
Recovery by H type III ligands was subject-specific and weakly correlated with stool consistency. Input virus titer was not correlated with SMV recovery. The results suggest that the generally low virus recovery we observed may be due to bead saturation or hindrance by existing glycans in the matrix that precluded the virus from being captured by the synthetic glycans. These results indicate a strong role for subject-specific and matrix effects in HBGA binding by SMV. Further investigation of the nature of this interference is needed to facilitate development of high sensitivity diagnostic assays.
Urban sanitation necessitates management of fecal sludge inside and outside the household. This study examined associations between household sanitation, fecal contamination, and enteric infection in two low-income neighborhoods in Vellore, India. Surveys and spatial analysis assessed the presence and clustering of toilets and fecal sludge management (FSM) practices in 200 households. Fecal contamination was measured in environmental samples from 50 households and household drains. Enteric infection was assessed from stool specimens from children under 5 years of age in these households. The two neighborhoods differed significantly in toilet coverage (78% versus 33%) and spatial clustering. Overall, 49% of toilets discharged directly into open drains (“poor FSM”). Children in households with poor FSM had 3.78 times higher prevalence of enteric infection when compared with children in other households, even those without toilets. In the neighborhood with high coverage of household toilets, children in households with poor FSM had 10 times higher prevalence of enteric infection than other children in the neighborhood and drains in poor FSM clusters who had significantly higher concentrations of genogroup II norovirus. Conversely, children in households with a toilet that contained excreta in a tank onsite had 55% lower prevalence of enteric infection compared with the rest of the study area. Notably, households with a toilet in the neighborhood with low toilet coverage had more fecal contamination on floors where children played compared with those without a toilet. Overall, both toilet coverage levels and FSM were associated with environmental fecal contamination and, subsequently, enteric infection prevalence in this urban setting.