Shoot-through proton FLASH radiation therapy has been proposed where the highest energy is extracted from a cyclotron to maximize the dose rate (DR). Although our proton pencil beam scanning system can deliver 250 MeV (the highest energy), this energy is not used clinically, and as such, 250 MeV has yet to be characterized during clinical commissioning. We aim to characterize the 250-MeV proton beam from the Varian ProBeam system for FLASH and assess the usability of the clinical monitoring ionization chamber (MIC) for FLASH use. We measured the following data for beam commissioning: integral depth dose curve, spot sigma, and absolute dose. To evaluate the MIC, we measured output as a function of beam current. To characterize a 250 MeV FLASH beam, we measured (1) the central axis DR as a function of current and spot spacing and arrangement, (2) for a fixed spot spacing, the maximum field size that achieves FLASH DR (ie, > 40 Gy/s), and (3) DR reproducibility. All FLASH DR measurements were performed using an ion chamber for the absolute dose, and irradiation times were obtained from log files. We verified dose measurements using EBT-XD films and irradiation times using a fast, pixelated spectral detector. R90 and R80 from integral depth dose were 37.58 and 37.69 cm, and spot sigma at the isocenter were σx = 3.336 and σy = 3.332 mm, respectively. The absolute dose output was measured as 0.343 Gy*mm2/MU for the commissioning conditions. Output was stable for beam currents up to 15 nA and gradually increased to 12-fold for 115 nA. Dose and DR depended on beam current, spot spacing, and arrangement and could be reproduced with 6.4% and 4.2% variations, respectively. Although FLASH was achieved and the largest field size that delivers FLASH DR was determined as 35 × 35 mm2, the current MIC has DR dependence, and users should measure dose and DR independently each time for their FLASH applications.
Purpose: To report our experience with rotational total skin electron irradiation (RTSEI) in cutaneous T-cell lymphoma (CTCL), and to examine response by disease stage and race.
Methods and Materials: We reviewed our outcomes for 68 CTCL patients who received RTSEI (≥30 Gy) from 2000 to 2013. Primary outcomes were complete clinical response (CCR), recurrence-free survival (RFS), and overall survival (OS). Using log-rank tests and Cox proportional hazards, OS and RFS were compared across tumor stages at time of RTSEI with further racial subgroup analysis.
Results: Median age at diagnosis and at time of radiation was 52 and 56 years, respectively. Median follow-up was 5.1 years, 49% were African American, and 49% were female. At time of treatment, 18, 37, and 13 patients were T stage 2, 3, and 4, respectively. At 6 weeks after RTSEI, overall CCR was 82% (88%, 83%, and 69% for T2, T3, and T4, respectively). Median RFS was 11 months for all patients and 14, 10, and 12 months for stage T2, T3, and T4, respectively. Tumor stage was not associated with RFS or CCR. Maintenance therapy after RTSEI was associated with improved RFS in both crude and multivariable analysis, controlling for T stage. Median OS was 76 months (91 and 59 months for T3 and T4, respectively). With the exception of improved OS in African Americans compared with whites at stage T2, race was not associated with CCR, RFS, or OS.
Conclusions: These results represent the largest RTSEI clinical outcomes study in the modern era using a dual-field rotational technique. Our observed response rates match or improve upon the standard set by previous outcome studies using conventional TSEI techniques, despite a large percentage of advanced CTCL lesions in our cohort. We found that clinical response after RTSEI did not seem to be affected by T stage or race.
Frameless radiosurgery is an attractive alternative to the framed procedure if it can be performed with comparable precision in a reasonable time frame. Here, we present a positioning approach for frameless radiosurgery based on in-room volumetric imaging coupled with an advanced six-degrees-of-freedom (6 DOF) image registration technique which avoids use of a bite block. Patient motion is restricted with a custom thermoplastic mask. Accurate positioning is achieved by registering a cone-beam CT to the planning CT scan and applying all translational and rotational shifts using a custom couch mount. System accuracy was initially verified on an anthropomorphic phantom. Isocenters of delineated targets in the phantom were computed and aligned by our system with an average accuracy of 0.2 mm, 0.3 mm, and 0.4 mm in the lateral, vertical, and longitudinal directions, respectively. The accuracy in the rotational directions was 0.1°, 0.2°, and 0.1° in the pitch, roll, and yaw, respectively. An additional test was performed using the phantom in which known shifts were introduced. Misalignments up to 10 mm and 3° in all directions/rotations were introduced in our phantom and recovered to an ideal alignment within 0.2 mm, 0.3 mm, and 0.4 mm in the lateral, vertical, and longitudinal directions, respectively, and within 0.3° in any rotational axis. These values are less than couch motion precision. Our first 28 patients with 38 targets treated over 63 fractions are analyzed in the patient positioning phase of the study. Mean error in the shifts predicted by the system were less than 0.5 mm in any translational direction and less than 0.3° in any rotation, as assessed by a confirmation CBCT scan. We conclude that accurate and efficient frameless radiosurgery positioning is achievable without the need for a bite block by using our 6DOF registration method. This system is inexpensive compared to a couch-based 6 DOF system, improves patient comfort compared to systems that utilize a bite block, and is ideal for the treatment of pediatric patients with or without general anesthesia, as well as of patients with dental issues. From this study, it is clear that only adjusting for 4 DOF may, in some cases, lead to significant compromise in PTV coverage. Since performing the additional match with 6 DOF in our registration system only adds a relatively short amount of time to the overall process, we advocate making the precise match in all cases.
The objective was to evaluate the performance of a high-definition multileaf collimator (MLC) of 2.5 mm leaf width (MLC 2.5 ) and compare to standard 5 mm leaf width MLC (MLC 5 ) for the treatment of intracranial lesions using dynamic conformal arcs (DCA) technique with a dedicated radiosurgery linear accelerator. Simulated cases of spherical targets were created to study solely the effect of target volume size on the performance of the two MLC systems independent of target shape complexity. In addition, 43 patients previously treated for intracranial lesions in our institution were retrospectively planned using DCA technique with MLC 2.5 and MLC 5 systems. The gross tumor volume ranged from 0.07 to 40.57 cm 3 with an average volume of 5.9 cm 3 . All treatment parameters were kept the same for both MLC-based plans. The plan evaluation was performed using figures of merits (FOM) for a rapid and objective assessment on the quality of the two treatment plans for MLC 2.5 and MLC 5 . The prescription isodose surface was selected as the greatest isodose surface covering ≥ 95% of the target volume and delivering 95% of the prescription dose to 99% of target volume. A Conformity Index (CI) and conformity distance index (CDI) were used to quantifying the dose conformity to a target volume. To assess normal tissue sparing, a normal tissue difference (NTD) was defined as the difference between the volume of normal tissue receiving a certain dose utilizing MLC 5 and the volume receiving the same dose using MLC 2.5 . The CI and normal tissue sparing for the simulated spherical targets were better with the MLC 2.5 as compared to MLC 5 . For the clinical patients, the CI and CDI results indicated that the MLC 2.5 provides better treatment conformity than MLC 5 even at large target volumes. The CI's range was 1.15 to 2.44 with a median of 1.59 for MLC 2.5 compared to 1.60-2.85 with a median of 1.71 for MLC 5 . Improved normal tissue sparing was also observed for MLC 2.5 over MLC 5 , with the NTD always positive, indicating improvement, and ranging from 0.1 to 8.3 for normal tissue receiving 50% (NTV 50 ), 70% (NTV 70 ) and 90% (NTV 90 ) of the prescription dose. The MLC 2.5 has a dosimetric advantage over the MLC 5 in Linac-based radiosurgery using DCA method for intracranial lesions, both in treatment conformity and normal tissue sparing when target shape complexity increases.
Introduction:
Cone-beam CT (CBCT) image quality is important for its quantitative analysis in adaptive radiation therapy. However, due to severe artifacts, the CBCTs are primarily used for verifying patient setup only so far. We have developed a learning-based image quality improvement method which could provide CBCTs with image quality comparable to planning CTs (pCTs). The accuracy of dose calculations based on these CBCTs is unknown. In this study, we aim to investigate the dosimetric accuracy of our corrected CBCT (CCBCT) in brain stereotactic radiosurgery (SRS) and pelvic radiotherapy.
Materials and Methods:
We retrospectively investigated a total of 32 treatment plans from 22 patients, each of whom with both original treatment pCTs and CBCTs acquired during treatment setup. The CCBCT and original CBCT (OCBCT) were registered to the pCT for generating CCBCT-based and OCBCT-based treatment plans. The original pCT-based plans served as ground truth. Clinically-relevant dose volume histogram (DVH) metrics were extracted from the ground truth, OCBCT-based and CCBCT-based plans for comparison. Gamma analysis was also performed to compare the absorbed dose distributions between the pCT-based and OCBCT/CCBCT-based plans of each patient.
Results:
CCBCTs demonstrated better image contrast and more accurate HU ranges when compared side-by-side with OCBCTs. For pelvic radiotherapy plans, the mean dose error in DVH metrics for planning target volume (PTV), bladder and rectum was significantly reduced, from 1% to 0.3%, after CBCT correction. The gamma analysis showed the average pass rate increased from 94.5% before correction to 99.0% after correction. For brain SRS treatment plans, both original and corrected CBCT images were accurate enough for dose calculation, though CCBCT featured higher image quality.
Conclusion:
CCBCTs can provide a level of dose accuracy comparable to traditional pCTs for brain and prostate radiotherapy planning and the correction method proposed here can be useful in CBCT-guided adaptive radiotherapy.
PURPOSE: Transitioning from two-dimensional to three-dimensional treatment planning requires developing contouring skills. Contouring atlases are excellent resources, but they do not provide users active feedback. Developing countries may not have many radiation oncologists experienced in three-dimensional planning to provide training. We sought to develop a standardized self-guided educational module with integrated feedback to teach contouring skills.
METHODS AND MATERIALS: All 18 oncology residents at Black Lion Hospital/Addis Ababa University in Ethiopia were trained to contour the level II lymph node station. Residents took a baseline pretest quiz, survey, and contouring evaluation. Residents then watched an instructional contouring lecture and performed three additional cases with integrated feedback by comparing their contours to gold-standard contours. Residents then took a post-training quiz, survey, and contouring evaluation. Paired t tests and analysis of variance were used for analysis.
RESULTS: Before training, the average number of total cases ever contoured was 2.4 and the average number of head and neck cases contoured was 0.5. Comfort with contouring improved from being "not at all comfortable" to "quite comfortable" after the 3-hour training (P < .001). The standard deviation between the resident contours and gold standard improved from 72.6 cm3 (pretest) to 7.4 cm3 (post-test). The average percentage overlap with the gold-standard contours and Dice similarity coefficient improved with each case performed, from 27.7% and 0.26 (pretest) to 80.1% and 0.77 (post-test), respectively (P < .001). After training, 16 of 18 (88.9%) residents produced a Dice similarity coefficient greater than 0.7, the threshold generally accepted for excellent agreement.
CONCLUSION: This self-guided teaching module was an effective tool for developing level II lymph node contouring skills by providing active feedback and resulted in improved user confidence and accuracy compared with a gold standard. This module can be expanded to other disease sites and countries to further facilitate transitioning to three-dimensional treatment planning in developing countries.
Purpose: To determine the dosimetric effects of rotational errors on target coverage using volumetric modulated arc therapy (VMAT) for multi-target stereotactic radiosurgery (SRS).
Methods and Materials: This retrospective study includes 50 SRS cases, each with 2 intracranial planning target volumes (PTVs). Both PTVs were planned for simultaneous treatment to 21 Gy using a single-isocenter, non-coplanar VMAT SRS technique. Rotational errors of 0.5°, 1.0°, and 2.0° were simulated about all axes. The dose to 95% of the PTV (D95) and the volume covered by 95% of the prescribed dose (V95) were evaluated using multivariate analysis to determine how PTV coverage is related to PTV volume, PTV separation, and rotational error.
Results: At 0.5° rotational error, D95 values and V95 coverage rates were ≥ 95% in all cases. For rotational errors of 1.0°, 7% of targets had D95 and V95 values below 95%. Coverage worsened substantially when the rotational error increased to 2.0°: D95 and V95 values were > 95% for only 63% of the targets. Multivariate analysis showed that PTV volume and distance to isocenter were strong predictors of target coverage.
Conclusions: The effects of rotational errors on target coverage were studied across a broad range of SRS cases. In general, the risk of compromised coverage increases with decreasing target volume, increasing rotational error and increasing distance between targets. Multivariate regression models from this study may be used to quantify the dosimetric effects of rotational errors on target coverage given patient-specific input parameters of PTV volume and distance to isocenter.
We propose a CBCT image quality improvement method based on anatomic signature and auto-context alternating regression forest. Patient-specific anatomical features are extracted from the aligned training images and served as signatures for each voxel. The most relevant and informative features are identified to train regression forest. The well-trained regression forest is used to correct the CBCT of a new patient. This proposed algorithm was evaluated using 10 patients’ data with CBCT and CT images. The mean absolute error (MAE), peak signal-to-noise ratio (PSNR) and normalized cross correlation (NCC) indexes were used to quantify the correction accuracy of the proposed algorithm. The mean MAE, PSNR and NCC between corrected CBCT and ground truth CT were 16.66HU, 37.28dB and 0.98, which demonstrated the CBCT correction accuracy of the proposed learning-based method. We have developed a learning-based method and demonstrated that this method could significantly improve CBCT image quality. The proposed method has great potential in improving CBCT image quality to a level close to planning CT, therefore, allowing its quantitative use in CBCT-guided adaptive radiotherapy.
We have developed a novel patch-based cone beam CT (CBCT) artifact correction method based on prior CT images. First, we used the image registration to align the planning CT with the CBCT to reduce the geometry difference between the two images. Then, we brought the planning CT-based prior information into the Bayesian deconvolution framework to perform the CBCT scatter artifact correction based on patch-wise nonlocal mean strategy. We evaluated the proposed correction method using a Catphan phantom with multiple inserts based on contrast-to-noise ratios (CNR) and signal-to-noise ratios (SNR), and the image spatial non-uniformity (ISN). All values of CNR SNR and ISN in the corrected CBCT image were much closer to those in the planning CT images. The results demonstrated that the proposed CT-guided correction method could significantly reduce scatter artifacts and improve the image quality. This method has great potential to correct CBCT images allowing its use in adaptive radiotherapy.
We propose a denoising method of CT image based on low-rank sparse coding. The proposed method constructs an adaptive dictionary of image patches and estimates the sparse coding regularization parameters using the Bayesian interpretation. A low-rank approximation approach is used to simultaneously construct the dictionary and achieve sparse representation through clustering similar image patches. A variable-splitting scheme and a quadratic optimization are used to reconstruct CT image based on achieved sparse coefficients. We tested this denoising technology using phantom, brain and abdominal CT images. The experimental results showed that the proposed method delivers state-of-art denoising performance, both in terms of objective criteria and visual quality.